Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis

Agda Marobo Andreotti, Marcelo Coelho Goiato, Amália Moreno, Adhara Smith Nobrega, Aldiéris Alves Pesqueira, Daniela Micheline dos Santos Araçatuba Dental School, São Paulo State University, Araçatuba, São Paulo, Brazil Abstract: T...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andreotti AM, Goiato MC, Moreno A, Nobrega AS, Pesqueira AA, dos Santos DM
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://doaj.org/article/3b9923f5d51e49d0b0de3ae505727d56
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3b9923f5d51e49d0b0de3ae505727d56
record_format dspace
spelling oai:doaj.org-article:3b9923f5d51e49d0b0de3ae505727d562021-12-02T04:33:10ZInfluence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis1178-2013https://doaj.org/article/3b9923f5d51e49d0b0de3ae505727d562014-12-01T00:00:00Zhttp://www.dovepress.com/influence-of-nanoparticles-on-color-stability-microhardness-and-flexur-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013 Agda Marobo Andreotti, Marcelo Coelho Goiato, Amália Moreno, Adhara Smith Nobrega, Aldiéris Alves Pesqueira, Daniela Micheline dos Santos Araçatuba Dental School, São Paulo State University, Araçatuba, São Paulo, Brazil Abstract: The aim of this study was to assess the effect of adding nanoparticles to N1 acrylic resin intended for artificial sclera, in terms of the color stability, microhardness, and flexural strength of the resin. Three hundred samples of N1 acrylic resin were used: 100 samples for color stability and microhardness tests (each test was performed on the opposite side of each sample), and 200 samples for flexural strength testing (100 samples before and after 1,008 hours of accelerated aging). Samples for each test were separated into ten groups (n=10), ie, without nanoparticles (control group) or with nanoparticles of zinc oxide, titanium dioxide (TiO2), and barium sulfate at weight concentrations of 1%, 2%, and 2.5% (nanoparticle groups). Data were subjected to statistical analysis with nested analysis of variance and Tukey’s test (P<0.05 significance level). Among the nanoparticle groups, the TiO2 groups showed better color stability at all concentrations. Microhardness values increased after artificial aging, except for the control and zinc oxide groups. After aging, the 1%–2% TiO2 groups had significantly higher microhardness values compared with the other nanoparticle groups. Before aging, there was a significant difference in flexural strength between the control and nanoparticle groups. After aging, the control and TiO2 groups, regardless of concentration, showed the lowest flexural strength values. Incorporation of nanoparticles directly influenced the acrylic resin properties, with TiO2 being the most influential nanoparticle in terms of the evaluated properties. Keywords: acrylic resins, eye, artificial, color, hardness, nanoparticlesAndreotti AMGoiato MCMoreno ANobrega ASPesqueira AAdos Santos DMDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2014, Iss Issue 1, Pp 5779-5787 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Andreotti AM
Goiato MC
Moreno A
Nobrega AS
Pesqueira AA
dos Santos DM
Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis
description Agda Marobo Andreotti, Marcelo Coelho Goiato, Amália Moreno, Adhara Smith Nobrega, Aldiéris Alves Pesqueira, Daniela Micheline dos Santos Araçatuba Dental School, São Paulo State University, Araçatuba, São Paulo, Brazil Abstract: The aim of this study was to assess the effect of adding nanoparticles to N1 acrylic resin intended for artificial sclera, in terms of the color stability, microhardness, and flexural strength of the resin. Three hundred samples of N1 acrylic resin were used: 100 samples for color stability and microhardness tests (each test was performed on the opposite side of each sample), and 200 samples for flexural strength testing (100 samples before and after 1,008 hours of accelerated aging). Samples for each test were separated into ten groups (n=10), ie, without nanoparticles (control group) or with nanoparticles of zinc oxide, titanium dioxide (TiO2), and barium sulfate at weight concentrations of 1%, 2%, and 2.5% (nanoparticle groups). Data were subjected to statistical analysis with nested analysis of variance and Tukey’s test (P<0.05 significance level). Among the nanoparticle groups, the TiO2 groups showed better color stability at all concentrations. Microhardness values increased after artificial aging, except for the control and zinc oxide groups. After aging, the 1%–2% TiO2 groups had significantly higher microhardness values compared with the other nanoparticle groups. Before aging, there was a significant difference in flexural strength between the control and nanoparticle groups. After aging, the control and TiO2 groups, regardless of concentration, showed the lowest flexural strength values. Incorporation of nanoparticles directly influenced the acrylic resin properties, with TiO2 being the most influential nanoparticle in terms of the evaluated properties. Keywords: acrylic resins, eye, artificial, color, hardness, nanoparticles
format article
author Andreotti AM
Goiato MC
Moreno A
Nobrega AS
Pesqueira AA
dos Santos DM
author_facet Andreotti AM
Goiato MC
Moreno A
Nobrega AS
Pesqueira AA
dos Santos DM
author_sort Andreotti AM
title Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis
title_short Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis
title_full Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis
title_fullStr Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis
title_full_unstemmed Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis
title_sort influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis
publisher Dove Medical Press
publishDate 2014
url https://doaj.org/article/3b9923f5d51e49d0b0de3ae505727d56
work_keys_str_mv AT andreottiam influenceofnanoparticlesoncolorstabilitymicrohardnessandflexuralstrengthofacrylicresinsspecificforocularprosthesis
AT goiatomc influenceofnanoparticlesoncolorstabilitymicrohardnessandflexuralstrengthofacrylicresinsspecificforocularprosthesis
AT morenoa influenceofnanoparticlesoncolorstabilitymicrohardnessandflexuralstrengthofacrylicresinsspecificforocularprosthesis
AT nobregaas influenceofnanoparticlesoncolorstabilitymicrohardnessandflexuralstrengthofacrylicresinsspecificforocularprosthesis
AT pesqueiraaa influenceofnanoparticlesoncolorstabilitymicrohardnessandflexuralstrengthofacrylicresinsspecificforocularprosthesis
AT dossantosdm influenceofnanoparticlesoncolorstabilitymicrohardnessandflexuralstrengthofacrylicresinsspecificforocularprosthesis
_version_ 1718401177134039040