In situ activation graphitization to fabricate hierarchical porous graphitic carbon for supercapacitor
Abstract In situ activation–graphitization method based on the atomically dispersed K and Fe in organic salts is developed to synthesize hierarchical porous graphitic carbon by directly pyrolysis potassium citrate and iron citrate. Moreover, (NH4)2C2O4 is also employed as both N dopant and porogen t...
Saved in:
Main Authors: | , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/3b9daa8325af45e6b5f2287b750de4c5 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract In situ activation–graphitization method based on the atomically dispersed K and Fe in organic salts is developed to synthesize hierarchical porous graphitic carbon by directly pyrolysis potassium citrate and iron citrate. Moreover, (NH4)2C2O4 is also employed as both N dopant and porogen to open up internal structure and regulate pore structure. The inside-out activation leads to the homogeneous reaction and interconnected hierarchical porous structure with few dead pores. Accompanied by high specific surface area, appropriate pore distribution, good conductivity, and N/O functional groups, the sample exhibits high capacitance of 322.6 F g−1 at 0.5 A g−1, good rate capability, and excellent cycling stability with 101.5% capacitance retention after 15,000 cycles. The supercapacitor shows an energy density of 21.3 W h kg−1 at 456.7 W kg−1 in 1 M Na2SO4. Easy synthesis, cost-effective, and environmentally benign, the work provides a promising strategy to produce hierarchical porous graphitic carbon applied in energy storage. |
---|