Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)
Deep learning has gained immense attention from researchers in medicine, especially in medical imaging. The main bottleneck is the unavailability of sufficiently large medical datasets required for the good performance of deep learning models. This paper proposes a new framework consisting of one va...
Guardado en:
Autores principales: | Bilal Ahmad, Sun Jun, Vasile Palade, Qi You, Li Mao, Mao Zhongjie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3b9db49dbab84d11853d3f1754a2ff87 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adversarial Attention-Based Variational Graph Autoencoder
por: Ziqiang Weng, et al.
Publicado: (2020) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
GAN-GL: Generative Adversarial Networks for Glacial Lake Mapping
por: Hang Zhao, et al.
Publicado: (2021) -
Assessment of temporal change in the tails of probability distribution of daily precipitation over India due to climatic shift in the 1970s
por: Neha Gupta, et al.
Publicado: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
por: Yanlong Gao, et al.
Publicado: (2021)