Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN)
Deep learning has gained immense attention from researchers in medicine, especially in medical imaging. The main bottleneck is the unavailability of sufficiently large medical datasets required for the good performance of deep learning models. This paper proposes a new framework consisting of one va...
Enregistré dans:
| Auteurs principaux: | Bilal Ahmad, Sun Jun, Vasile Palade, Qi You, Li Mao, Mao Zhongjie |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
MDPI AG
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/3b9db49dbab84d11853d3f1754a2ff87 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Adversarial Attention-Based Variational Graph Autoencoder
par: Ziqiang Weng, et autres
Publié: (2020) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
par: Chuan Du, et autres
Publié: (2021) -
GAN-GL: Generative Adversarial Networks for Glacial Lake Mapping
par: Hang Zhao, et autres
Publié: (2021) -
Assessment of temporal change in the tails of probability distribution of daily precipitation over India due to climatic shift in the 1970s
par: Neha Gupta, et autres
Publié: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
par: Yanlong Gao, et autres
Publié: (2021)