Quantum annealing using vacuum states as effective excited states of driven systems
For hard Quantum Annealing problems, starting from the ground state might result into high failure probability due to nonadiabatic transitions where the quantum system leaves the ground state. Here, the authors propose an "excited-state" quantum annealing where a driven system starts in it...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3bc2a32eaa6c4f0ab2b36228a530ab7e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | For hard Quantum Annealing problems, starting from the ground state might result into high failure probability due to nonadiabatic transitions where the quantum system leaves the ground state. Here, the authors propose an "excited-state" quantum annealing where a driven system starts in its vacuum state set to an effective excited state, and show that this approach is successful in reducing the failure probability. |
---|