Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation

This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yonhon Ng, Hongdong Li, Jonghyuk Kim
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/3bc3de04fc5548fdb3de71978fa38551
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles. Existing research has not fully utilised the uncertainty of the optical flow—at most, an isotropic Gaussian density model has been used. We estimate the full uncertainty of the optical flow and propose a new eight-point algorithm based on the statistical Mahalanobis distance. Combined with the pose-graph optimisation, the proposed method demonstrates enhanced robustness and accuracy for the public autonomous car dataset (KITTI) and aerial monocular dataset.