Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation
This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles....
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3bc3de04fc5548fdb3de71978fa38551 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3bc3de04fc5548fdb3de71978fa38551 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3bc3de04fc5548fdb3de71978fa385512021-11-25T18:57:51ZUncertainty Estimation of Dense Optical Flow for Robust Visual Navigation10.3390/s212276031424-8220https://doaj.org/article/3bc3de04fc5548fdb3de71978fa385512021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/22/7603https://doaj.org/toc/1424-8220This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles. Existing research has not fully utilised the uncertainty of the optical flow—at most, an isotropic Gaussian density model has been used. We estimate the full uncertainty of the optical flow and propose a new eight-point algorithm based on the statistical Mahalanobis distance. Combined with the pose-graph optimisation, the proposed method demonstrates enhanced robustness and accuracy for the public autonomous car dataset (KITTI) and aerial monocular dataset.Yonhon NgHongdong LiJonghyuk KimMDPI AGarticlemonocular visual navigationdense optical flowuncertainty estimationepipolar constraintsChemical technologyTP1-1185ENSensors, Vol 21, Iss 7603, p 7603 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
monocular visual navigation dense optical flow uncertainty estimation epipolar constraints Chemical technology TP1-1185 |
spellingShingle |
monocular visual navigation dense optical flow uncertainty estimation epipolar constraints Chemical technology TP1-1185 Yonhon Ng Hongdong Li Jonghyuk Kim Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation |
description |
This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles. Existing research has not fully utilised the uncertainty of the optical flow—at most, an isotropic Gaussian density model has been used. We estimate the full uncertainty of the optical flow and propose a new eight-point algorithm based on the statistical Mahalanobis distance. Combined with the pose-graph optimisation, the proposed method demonstrates enhanced robustness and accuracy for the public autonomous car dataset (KITTI) and aerial monocular dataset. |
format |
article |
author |
Yonhon Ng Hongdong Li Jonghyuk Kim |
author_facet |
Yonhon Ng Hongdong Li Jonghyuk Kim |
author_sort |
Yonhon Ng |
title |
Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation |
title_short |
Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation |
title_full |
Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation |
title_fullStr |
Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation |
title_full_unstemmed |
Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation |
title_sort |
uncertainty estimation of dense optical flow for robust visual navigation |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/3bc3de04fc5548fdb3de71978fa38551 |
work_keys_str_mv |
AT yonhonng uncertaintyestimationofdenseopticalflowforrobustvisualnavigation AT hongdongli uncertaintyestimationofdenseopticalflowforrobustvisualnavigation AT jonghyukkim uncertaintyestimationofdenseopticalflowforrobustvisualnavigation |
_version_ |
1718410457130205184 |