Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation

This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yonhon Ng, Hongdong Li, Jonghyuk Kim
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/3bc3de04fc5548fdb3de71978fa38551
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3bc3de04fc5548fdb3de71978fa38551
record_format dspace
spelling oai:doaj.org-article:3bc3de04fc5548fdb3de71978fa385512021-11-25T18:57:51ZUncertainty Estimation of Dense Optical Flow for Robust Visual Navigation10.3390/s212276031424-8220https://doaj.org/article/3bc3de04fc5548fdb3de71978fa385512021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/22/7603https://doaj.org/toc/1424-8220This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles. Existing research has not fully utilised the uncertainty of the optical flow—at most, an isotropic Gaussian density model has been used. We estimate the full uncertainty of the optical flow and propose a new eight-point algorithm based on the statistical Mahalanobis distance. Combined with the pose-graph optimisation, the proposed method demonstrates enhanced robustness and accuracy for the public autonomous car dataset (KITTI) and aerial monocular dataset.Yonhon NgHongdong LiJonghyuk KimMDPI AGarticlemonocular visual navigationdense optical flowuncertainty estimationepipolar constraintsChemical technologyTP1-1185ENSensors, Vol 21, Iss 7603, p 7603 (2021)
institution DOAJ
collection DOAJ
language EN
topic monocular visual navigation
dense optical flow
uncertainty estimation
epipolar constraints
Chemical technology
TP1-1185
spellingShingle monocular visual navigation
dense optical flow
uncertainty estimation
epipolar constraints
Chemical technology
TP1-1185
Yonhon Ng
Hongdong Li
Jonghyuk Kim
Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation
description This paper presents a novel dense optical-flow algorithm to solve the monocular simultaneous localisation and mapping (SLAM) problem for ground or aerial robots. Dense optical flow can effectively provide the ego-motion of the vehicle while enabling collision avoidance with the potential obstacles. Existing research has not fully utilised the uncertainty of the optical flow—at most, an isotropic Gaussian density model has been used. We estimate the full uncertainty of the optical flow and propose a new eight-point algorithm based on the statistical Mahalanobis distance. Combined with the pose-graph optimisation, the proposed method demonstrates enhanced robustness and accuracy for the public autonomous car dataset (KITTI) and aerial monocular dataset.
format article
author Yonhon Ng
Hongdong Li
Jonghyuk Kim
author_facet Yonhon Ng
Hongdong Li
Jonghyuk Kim
author_sort Yonhon Ng
title Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation
title_short Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation
title_full Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation
title_fullStr Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation
title_full_unstemmed Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation
title_sort uncertainty estimation of dense optical flow for robust visual navigation
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/3bc3de04fc5548fdb3de71978fa38551
work_keys_str_mv AT yonhonng uncertaintyestimationofdenseopticalflowforrobustvisualnavigation
AT hongdongli uncertaintyestimationofdenseopticalflowforrobustvisualnavigation
AT jonghyukkim uncertaintyestimationofdenseopticalflowforrobustvisualnavigation
_version_ 1718410457130205184