A LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise

This paper proposes a nonconvex model (called LogTVSCAD) for deblurring images with impulsive noises, using the log-function penalty as the regularizer and adopting the smoothly clipped absolute deviation (SCAD) function as the data-fitting term. The proposed nonconvex model can effectively overcome...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhijun Luo, Zhibin Zhu, Benxin Zhang
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/3bcd11db09474d5dac2c13c35b484e6e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3bcd11db09474d5dac2c13c35b484e6e
record_format dspace
spelling oai:doaj.org-article:3bcd11db09474d5dac2c13c35b484e6e2021-11-08T02:37:07ZA LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise1607-887X10.1155/2021/3289477https://doaj.org/article/3bcd11db09474d5dac2c13c35b484e6e2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/3289477https://doaj.org/toc/1607-887XThis paper proposes a nonconvex model (called LogTVSCAD) for deblurring images with impulsive noises, using the log-function penalty as the regularizer and adopting the smoothly clipped absolute deviation (SCAD) function as the data-fitting term. The proposed nonconvex model can effectively overcome the poor performance of the classical TVL1 model for high-level impulsive noise. A difference of convex functions algorithm (DCA) is proposed to solve the nonconvex model. For the model subproblem, we consider the alternating direction method of multipliers (ADMM) algorithm to solve it. The global convergence is discussed based on Kurdyka–Lojasiewicz. Experimental results show the advantages of the proposed nonconvex model over existing models.Zhijun LuoZhibin ZhuBenxin ZhangHindawi LimitedarticleMathematicsQA1-939ENDiscrete Dynamics in Nature and Society, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Mathematics
QA1-939
spellingShingle Mathematics
QA1-939
Zhijun Luo
Zhibin Zhu
Benxin Zhang
A LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise
description This paper proposes a nonconvex model (called LogTVSCAD) for deblurring images with impulsive noises, using the log-function penalty as the regularizer and adopting the smoothly clipped absolute deviation (SCAD) function as the data-fitting term. The proposed nonconvex model can effectively overcome the poor performance of the classical TVL1 model for high-level impulsive noise. A difference of convex functions algorithm (DCA) is proposed to solve the nonconvex model. For the model subproblem, we consider the alternating direction method of multipliers (ADMM) algorithm to solve it. The global convergence is discussed based on Kurdyka–Lojasiewicz. Experimental results show the advantages of the proposed nonconvex model over existing models.
format article
author Zhijun Luo
Zhibin Zhu
Benxin Zhang
author_facet Zhijun Luo
Zhibin Zhu
Benxin Zhang
author_sort Zhijun Luo
title A LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise
title_short A LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise
title_full A LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise
title_fullStr A LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise
title_full_unstemmed A LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise
title_sort logtvscad nonconvex regularization model for image deblurring in the presence of impulse noise
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/3bcd11db09474d5dac2c13c35b484e6e
work_keys_str_mv AT zhijunluo alogtvscadnonconvexregularizationmodelforimagedeblurringinthepresenceofimpulsenoise
AT zhibinzhu alogtvscadnonconvexregularizationmodelforimagedeblurringinthepresenceofimpulsenoise
AT benxinzhang alogtvscadnonconvexregularizationmodelforimagedeblurringinthepresenceofimpulsenoise
AT zhijunluo logtvscadnonconvexregularizationmodelforimagedeblurringinthepresenceofimpulsenoise
AT zhibinzhu logtvscadnonconvexregularizationmodelforimagedeblurringinthepresenceofimpulsenoise
AT benxinzhang logtvscadnonconvexregularizationmodelforimagedeblurringinthepresenceofimpulsenoise
_version_ 1718442990172635136