A LogTVSCAD Nonconvex Regularization Model for Image Deblurring in the Presence of Impulse Noise
This paper proposes a nonconvex model (called LogTVSCAD) for deblurring images with impulsive noises, using the log-function penalty as the regularizer and adopting the smoothly clipped absolute deviation (SCAD) function as the data-fitting term. The proposed nonconvex model can effectively overcome...
Guardado en:
Autores principales: | Zhijun Luo, Zhibin Zhu, Benxin Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3bcd11db09474d5dac2c13c35b484e6e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Image Denoising Based on Nonconvex Low-Rank Tensor Approximation and lp Norm Regularization
por: Li Bo, et al.
Publicado: (2021) -
Circulant preconditioners for mean curvature-based image deblurring problem
por: Shahbaz Ahmad, et al.
Publicado: (2021) -
The dependence structure of log-fractional stable noise with analogy to fractional Gaussian noise
por: Murad S. Taqqu, et al.
Publicado: (2008) -
Existence of Solutions for Superlinear Second-Order System with Noninstantaneous Impulses
por: Yucheng Bu
Publicado: (2021) -
Complete Hausdorffness and Complete Regularity on Supra Topological Spaces
por: T. M. Al-shami
Publicado: (2021)