Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro

Simona Bancos, David L Stevens, Katherine M Tyner Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA Abstract: The accumulation of durable nanoparticles (NPs) in macrophages following systemic administration is well described. The ultimate biological impa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bancos S, Stevens DL, Tyner KM
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://doaj.org/article/3bd0852c62244e28af18289e7938c225
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3bd0852c62244e28af18289e7938c225
record_format dspace
spelling oai:doaj.org-article:3bd0852c62244e28af18289e7938c2252021-12-02T00:43:23ZEffect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro1178-2013https://doaj.org/article/3bd0852c62244e28af18289e7938c2252014-12-01T00:00:00Zhttp://www.dovepress.com/effect-of-silica-and-gold-nanoparticles-on-macrophage-proliferation-ac-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013 Simona Bancos, David L Stevens, Katherine M Tyner Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA Abstract: The accumulation of durable nanoparticles (NPs) in macrophages following systemic administration is well described. The ultimate biological impact of this accumulation on macrophage function, however, is not fully understood. In this study, nontoxic doses of two durable NPs, SiO2 and Au, at particle sizes of ~10 nm and 300 nm were used to evaluate the effect of bioaccumulation on macrophage function in vitro using RAW 264.7 mouse macrophage-like cells as a model system. Cell proliferation, cell cycle, cytokine production, surface marker activation, and phagocytosis responses were evaluated through a panel of assays using flow cytometry and confocal microscopy. The most dramatic change in RAW 264.7 cell function was a reduction in phagocytosis as monitored by the uptake of Escherichia coli. Cells exposed to both 10 nm Au NPs and 10 nm SiO2 NPs showed ~50% decrease in phagocytosis, while the larger NPs caused a less dramatic reduction. In addition to modifying phagocytosis profiles, 10 nm SiO2 NPs caused changes in proliferation, cell cycle, and cell morphology. Au NPs had no effect on cell cycle, cytokine production, or surface markers and caused interference in phagocytosis in the form of quenching when the assay was performed via flow cytometry. Confocal microscopy analysis was used to minimize this interference and demonstrated that both sizes of Au NPs decreased the phagocytosis of E. coli. Overall, our results demonstrate that Au and SiO2 NP uptake by macrophages can influence macrophage phagocytosis in vitro without altering surface markers and cytokine production in vitro. While the biological impact of these findings remains unclear, our results indicate that bioaccumulation of durable NPs within the macrophages may lead to a suppression of bacterial uptake and possibly impair bactericidal activity. Keywords: bioaccumulation, phagocytosis, gold nanoparticles, silica nanoparticles, macrophage functionBancos SStevens DLTyner KMDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2015, Iss default, Pp 183-206 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Bancos S
Stevens DL
Tyner KM
Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro
description Simona Bancos, David L Stevens, Katherine M Tyner Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA Abstract: The accumulation of durable nanoparticles (NPs) in macrophages following systemic administration is well described. The ultimate biological impact of this accumulation on macrophage function, however, is not fully understood. In this study, nontoxic doses of two durable NPs, SiO2 and Au, at particle sizes of ~10 nm and 300 nm were used to evaluate the effect of bioaccumulation on macrophage function in vitro using RAW 264.7 mouse macrophage-like cells as a model system. Cell proliferation, cell cycle, cytokine production, surface marker activation, and phagocytosis responses were evaluated through a panel of assays using flow cytometry and confocal microscopy. The most dramatic change in RAW 264.7 cell function was a reduction in phagocytosis as monitored by the uptake of Escherichia coli. Cells exposed to both 10 nm Au NPs and 10 nm SiO2 NPs showed ~50% decrease in phagocytosis, while the larger NPs caused a less dramatic reduction. In addition to modifying phagocytosis profiles, 10 nm SiO2 NPs caused changes in proliferation, cell cycle, and cell morphology. Au NPs had no effect on cell cycle, cytokine production, or surface markers and caused interference in phagocytosis in the form of quenching when the assay was performed via flow cytometry. Confocal microscopy analysis was used to minimize this interference and demonstrated that both sizes of Au NPs decreased the phagocytosis of E. coli. Overall, our results demonstrate that Au and SiO2 NP uptake by macrophages can influence macrophage phagocytosis in vitro without altering surface markers and cytokine production in vitro. While the biological impact of these findings remains unclear, our results indicate that bioaccumulation of durable NPs within the macrophages may lead to a suppression of bacterial uptake and possibly impair bactericidal activity. Keywords: bioaccumulation, phagocytosis, gold nanoparticles, silica nanoparticles, macrophage function
format article
author Bancos S
Stevens DL
Tyner KM
author_facet Bancos S
Stevens DL
Tyner KM
author_sort Bancos S
title Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro
title_short Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro
title_full Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro
title_fullStr Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro
title_full_unstemmed Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro
title_sort effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro
publisher Dove Medical Press
publishDate 2014
url https://doaj.org/article/3bd0852c62244e28af18289e7938c225
work_keys_str_mv AT bancoss effectofsilicaandgoldnanoparticlesonmacrophageproliferationactivationmarkerscytokineproductionandphagocytosisinvitro
AT stevensdl effectofsilicaandgoldnanoparticlesonmacrophageproliferationactivationmarkerscytokineproductionandphagocytosisinvitro
AT tynerkm effectofsilicaandgoldnanoparticlesonmacrophageproliferationactivationmarkerscytokineproductionandphagocytosisinvitro
_version_ 1718403487235047424