Beyond the standard quantum limit for parametric amplification of broadband signals
Abstract The low-noise amplification of weak microwave signals is crucial for countless protocols in quantum information processing. Quantum mechanics sets an ultimate lower limit of half a photon to the added input noise for phase-preserving amplification of narrowband signals, also known as the st...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3bd1f2b588c34a088b8a3a8a3cc5738f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The low-noise amplification of weak microwave signals is crucial for countless protocols in quantum information processing. Quantum mechanics sets an ultimate lower limit of half a photon to the added input noise for phase-preserving amplification of narrowband signals, also known as the standard quantum limit (SQL). This limit, which is equivalent to a maximum quantum efficiency of 0.5, can be overcome by employing nondegenerate parametric amplification of broadband signals. We show that, in principle, a maximum quantum efficiency of unity can be reached. Experimentally, we find a quantum efficiency of 0.69 ± 0.02, well beyond the SQL, by employing a flux-driven Josephson parametric amplifier and broadband thermal signals. We expect that our results allow for fundamental improvements in the detection of ultraweak microwave signals. |
---|