PrognosiT: Pathway/gene set-based tumour volume prediction using multiple kernel learning
Abstract Background Identification of molecular mechanisms that determine tumour progression in cancer patients is a prerequisite for developing new disease treatment guidelines. Even though the predictive performance of current machine learning models is promising, extracting significant and meanin...
Guardado en:
Autores principales: | Ayyüce Begüm Bektaş, Mehmet Gönen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3bdf0d9723b14774a875cc2b5b3bfcca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Efficient Covid19 Epidemic Analysis and Prediction Model Using Machine Learning Algorithms
por: A Lakshmanarao, et al.
Publicado: (2021) -
Quantifying the impact of addressing data challenges in prediction of length of stay
por: Amin Naemi, et al.
Publicado: (2021) -
A Review on Kernel Learning Method of Moving Target Tracking
por: Lou Jiaxin, Li Yuankai, Wang Yuan, Xu Yanke
Publicado: (2021) -
Prognosis of Thoracic Cancer Using the Bierman Random Committee Machine Learning
por: Ezzat A. Mansour
Publicado: (2021) -
Modeling Structure–Activity Relationship of AMPK Activation
por: Jürgen Drewe, et al.
Publicado: (2021)