Face classification using electronic synapses

Using chips that mimic the human brain to perform cognitive tasks, namely neuromorphic computing, calls for low power and high efficiency hardware. Here, Yaoet al. show on-chip analogue weight storage by integrating non-volatile resistive memory into a CMOS platform and test it in facial recognition...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peng Yao, Huaqiang Wu, Bin Gao, Sukru Burc Eryilmaz, Xueyao Huang, Wenqiang Zhang, Qingtian Zhang, Ning Deng, Luping Shi, H.-S. Philip Wong, He Qian
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/3beae95efb8042dd8900349478d0b543
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3beae95efb8042dd8900349478d0b543
record_format dspace
spelling oai:doaj.org-article:3beae95efb8042dd8900349478d0b5432021-12-02T14:42:08ZFace classification using electronic synapses10.1038/ncomms151992041-1723https://doaj.org/article/3beae95efb8042dd8900349478d0b5432017-05-01T00:00:00Zhttps://doi.org/10.1038/ncomms15199https://doaj.org/toc/2041-1723Using chips that mimic the human brain to perform cognitive tasks, namely neuromorphic computing, calls for low power and high efficiency hardware. Here, Yaoet al. show on-chip analogue weight storage by integrating non-volatile resistive memory into a CMOS platform and test it in facial recognition.Peng YaoHuaqiang WuBin GaoSukru Burc EryilmazXueyao HuangWenqiang ZhangQingtian ZhangNing DengLuping ShiH.-S. Philip WongHe QianNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-8 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Peng Yao
Huaqiang Wu
Bin Gao
Sukru Burc Eryilmaz
Xueyao Huang
Wenqiang Zhang
Qingtian Zhang
Ning Deng
Luping Shi
H.-S. Philip Wong
He Qian
Face classification using electronic synapses
description Using chips that mimic the human brain to perform cognitive tasks, namely neuromorphic computing, calls for low power and high efficiency hardware. Here, Yaoet al. show on-chip analogue weight storage by integrating non-volatile resistive memory into a CMOS platform and test it in facial recognition.
format article
author Peng Yao
Huaqiang Wu
Bin Gao
Sukru Burc Eryilmaz
Xueyao Huang
Wenqiang Zhang
Qingtian Zhang
Ning Deng
Luping Shi
H.-S. Philip Wong
He Qian
author_facet Peng Yao
Huaqiang Wu
Bin Gao
Sukru Burc Eryilmaz
Xueyao Huang
Wenqiang Zhang
Qingtian Zhang
Ning Deng
Luping Shi
H.-S. Philip Wong
He Qian
author_sort Peng Yao
title Face classification using electronic synapses
title_short Face classification using electronic synapses
title_full Face classification using electronic synapses
title_fullStr Face classification using electronic synapses
title_full_unstemmed Face classification using electronic synapses
title_sort face classification using electronic synapses
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/3beae95efb8042dd8900349478d0b543
work_keys_str_mv AT pengyao faceclassificationusingelectronicsynapses
AT huaqiangwu faceclassificationusingelectronicsynapses
AT bingao faceclassificationusingelectronicsynapses
AT sukruburceryilmaz faceclassificationusingelectronicsynapses
AT xueyaohuang faceclassificationusingelectronicsynapses
AT wenqiangzhang faceclassificationusingelectronicsynapses
AT qingtianzhang faceclassificationusingelectronicsynapses
AT ningdeng faceclassificationusingelectronicsynapses
AT lupingshi faceclassificationusingelectronicsynapses
AT hsphilipwong faceclassificationusingelectronicsynapses
AT heqian faceclassificationusingelectronicsynapses
_version_ 1718389743778004992