Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink

Cartilage lesions can progress into secondary osteoarthritis and cause severe clinical problems in numerous patients. As a prospective treatment of such lesions, human-derived induced pluripotent stem cells (iPSCs) were shown to be 3D bioprinted into cartilage mimics using a nanofibrillated cellulos...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Duong Nguyen, Daniel A. Hägg, Alma Forsman, Josefine Ekholm, Puwapong Nimkingratana, Camilla Brantsing, Theodoros Kalogeropoulos, Samantha Zaunz, Sebastian Concaro, Mats Brittberg, Anders Lindahl, Paul Gatenholm, Annika Enejder, Stina Simonsson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3c064b477afd4f1db31a5385f9ae7dfe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Cartilage lesions can progress into secondary osteoarthritis and cause severe clinical problems in numerous patients. As a prospective treatment of such lesions, human-derived induced pluripotent stem cells (iPSCs) were shown to be 3D bioprinted into cartilage mimics using a nanofibrillated cellulose (NFC) composite bioink when co-printed with irradiated human chondrocytes. Two bioinks were investigated: NFC with alginate (NFC/A) or hyaluronic acid (NFC/HA). Low proliferation and phenotypic changes away from pluripotency were seen in the case of NFC/HA. However, in the case of the 3D-bioprinted NFC/A (60/40, dry weight % ratio) constructs, pluripotency was initially maintained, and after five weeks, hyaline-like cartilaginous tissue with collagen type II expression and lacking tumorigenic Oct4 expression was observed in 3D -bioprinted NFC/A (60/40, dry weight % relation) constructs. Moreover, a marked increase in cell number within the cartilaginous tissue was detected by 2-photon fluorescence microscopy, indicating the importance of high cell densities in the pursuit of achieving good survival after printing. We conclude that NFC/A bioink is suitable for bioprinting iPSCs to support cartilage production in co-cultures with irradiated chondrocytes.