The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging

Hang Su,1,* Yongbin Mou,1,* Yanli An,2 Wei Han,1 Xiaofeng Huang,1 Guohua Xia,3 Yanhong Ni,1 Yu Zhang,4 Jianmin Ma,1 Qingang Hu1,5 1Center Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, People's Republic of China; 2Jiangsu Key Lab of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Su H, Mou YB, An YL, Han W, Huang XF, Xia GH, Ni YH, Zhang Y, Ma JM, Hu QG
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2013
Materias:
Acceso en línea:https://doaj.org/article/3c0cae2aa9ee49b481dcaed4bb0e503a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3c0cae2aa9ee49b481dcaed4bb0e503a
record_format dspace
spelling oai:doaj.org-article:3c0cae2aa9ee49b481dcaed4bb0e503a2021-12-02T07:14:23ZThe migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging1176-91141178-2013https://doaj.org/article/3c0cae2aa9ee49b481dcaed4bb0e503a2013-10-01T00:00:00Zhttp://www.dovepress.com/the-migration-of-synthetic-magnetic-nanoparticle-labeled-dendritic-cel-a14597https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Hang Su,1,* Yongbin Mou,1,* Yanli An,2 Wei Han,1 Xiaofeng Huang,1 Guohua Xia,3 Yanhong Ni,1 Yu Zhang,4 Jianmin Ma,1 Qingang Hu1,5 1Center Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, People's Republic of China; 2Jiangsu Key Lab of Molecular and Function Imaging, Department of Radiology; 3Department of Hematology, Zhongda Hospital, Medical School, 4State Key Laboratory of Molecule and Bimolecular Electronics, Jiangsu Provincial Laboratory for Biomaterials and Devices; Southeast University, Nanjing, People's Republic of China; 5Leeds Dental Institute, Faculty of Medicine and health, University of Leeds, Leeds, United Kingdom*These authors contributed equally to this workBackground: The successful biotherapy of carcinoma with dendritic cell (DC) vaccines pivotally relies on DCs’ migratory capability into lymph tissues and activation of T cells. Accurate imaging and evaluation of DC migration in vivo have great significance during antitumor treatment with DC vaccine. We herein examined the behavior of DCs influenced by synthetic superparamagnetic iron oxide (SPIO) nanoparticle labeling.Methods: γ-Fe2O3 nanoparticles were prepared and DCs, which were induced from bone marrow monocytes of enhanced green fluorescent protein (EGFP) transgenic mice, were labeled. The endocytosis of the SPIO, surface molecules, cell apoptosis and fluorescence intensity of EGFP-DCs were displayed by Prussian blue staining and flow cytometry (FCM), respectively. After EGFP-DCs, labeled with SPIO, were injected into footpads (n = 5) for 24 hours, the mice were examined in vivo by optical imaging (OPI). Meanwhile, confocal imaging and FCM were applied, respectively, to detect the migration of labeled DCs into draining lymph nodes.Results: Nearly 100% of cells were labeled by the SPIO, in which the intracellular blue color gradually deepened and the iron contents rose with the increase of labeling iron concentrations. In addition, cell apoptosis and the surface molecules on DCs were at similar levels after SPIO labeling. After confirming that the fluorescence intensity of EGFP on DCs was not influenced by SPIO, the homing ability of EGFP-DCs labeled with SPIO displayed that the fluorescence intensity and the ratios of EGFP-DCs in draining lymph nodes were gradually decreased with the increase of labeling iron concentrations.Conclusion: The synthetic SPIO nanoparticles possess perfect labeling ability and biocompatibility. Moreover, DCs labeled with a low dose of SPIO showed stronger migratory capability in vivo.Keywords: optical imaging, dendritic cell, superparamagnetic iron oxide, cell trackingSu HMou YBAn YLHan WHuang XFXia GHNi YHZhang YMa JMHu QGDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2013, Iss Issue 1, Pp 3737-3744 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Su H
Mou YB
An YL
Han W
Huang XF
Xia GH
Ni YH
Zhang Y
Ma JM
Hu QG
The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging
description Hang Su,1,* Yongbin Mou,1,* Yanli An,2 Wei Han,1 Xiaofeng Huang,1 Guohua Xia,3 Yanhong Ni,1 Yu Zhang,4 Jianmin Ma,1 Qingang Hu1,5 1Center Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, People's Republic of China; 2Jiangsu Key Lab of Molecular and Function Imaging, Department of Radiology; 3Department of Hematology, Zhongda Hospital, Medical School, 4State Key Laboratory of Molecule and Bimolecular Electronics, Jiangsu Provincial Laboratory for Biomaterials and Devices; Southeast University, Nanjing, People's Republic of China; 5Leeds Dental Institute, Faculty of Medicine and health, University of Leeds, Leeds, United Kingdom*These authors contributed equally to this workBackground: The successful biotherapy of carcinoma with dendritic cell (DC) vaccines pivotally relies on DCs’ migratory capability into lymph tissues and activation of T cells. Accurate imaging and evaluation of DC migration in vivo have great significance during antitumor treatment with DC vaccine. We herein examined the behavior of DCs influenced by synthetic superparamagnetic iron oxide (SPIO) nanoparticle labeling.Methods: γ-Fe2O3 nanoparticles were prepared and DCs, which were induced from bone marrow monocytes of enhanced green fluorescent protein (EGFP) transgenic mice, were labeled. The endocytosis of the SPIO, surface molecules, cell apoptosis and fluorescence intensity of EGFP-DCs were displayed by Prussian blue staining and flow cytometry (FCM), respectively. After EGFP-DCs, labeled with SPIO, were injected into footpads (n = 5) for 24 hours, the mice were examined in vivo by optical imaging (OPI). Meanwhile, confocal imaging and FCM were applied, respectively, to detect the migration of labeled DCs into draining lymph nodes.Results: Nearly 100% of cells were labeled by the SPIO, in which the intracellular blue color gradually deepened and the iron contents rose with the increase of labeling iron concentrations. In addition, cell apoptosis and the surface molecules on DCs were at similar levels after SPIO labeling. After confirming that the fluorescence intensity of EGFP on DCs was not influenced by SPIO, the homing ability of EGFP-DCs labeled with SPIO displayed that the fluorescence intensity and the ratios of EGFP-DCs in draining lymph nodes were gradually decreased with the increase of labeling iron concentrations.Conclusion: The synthetic SPIO nanoparticles possess perfect labeling ability and biocompatibility. Moreover, DCs labeled with a low dose of SPIO showed stronger migratory capability in vivo.Keywords: optical imaging, dendritic cell, superparamagnetic iron oxide, cell tracking
format article
author Su H
Mou YB
An YL
Han W
Huang XF
Xia GH
Ni YH
Zhang Y
Ma JM
Hu QG
author_facet Su H
Mou YB
An YL
Han W
Huang XF
Xia GH
Ni YH
Zhang Y
Ma JM
Hu QG
author_sort Su H
title The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging
title_short The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging
title_full The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging
title_fullStr The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging
title_full_unstemmed The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging
title_sort migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging
publisher Dove Medical Press
publishDate 2013
url https://doaj.org/article/3c0cae2aa9ee49b481dcaed4bb0e503a
work_keys_str_mv AT suh themigrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT mouyb themigrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT anyl themigrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT hanw themigrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT huangxf themigrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT xiagh themigrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT niyh themigrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT zhangy themigrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT majm themigrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT huqg themigrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT suh migrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT mouyb migrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT anyl migrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT hanw migrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT huangxf migrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT xiagh migrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT niyh migrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT zhangy migrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT majm migrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
AT huqg migrationofsyntheticmagneticnanoparticlelabeleddendriticcellsintolymphnodeswithopticalimaging
_version_ 1718399512709431296