Three-Dimensionally Printed Ti2448 With Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis
Previous studies have found that the novel low-elastic-modulus Ti2448 alloy can significantly reduce stress shielding and contribute to better bone repair than the conventional Ti6Al4V alloy. In this study, the promotion of osteogenesis and angiogenesis by three-dimensionally printed Ti2448 were als...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3c131f51aeab494b87faf882d2c6974e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3c131f51aeab494b87faf882d2c6974e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3c131f51aeab494b87faf882d2c6974e2021-11-15T05:10:44ZThree-Dimensionally Printed Ti2448 With Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis2296-634X10.3389/fcell.2021.750948https://doaj.org/article/3c131f51aeab494b87faf882d2c6974e2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fcell.2021.750948/fullhttps://doaj.org/toc/2296-634XPrevious studies have found that the novel low-elastic-modulus Ti2448 alloy can significantly reduce stress shielding and contribute to better bone repair than the conventional Ti6Al4V alloy. In this study, the promotion of osteogenesis and angiogenesis by three-dimensionally printed Ti2448 were also observed in vivo. However, these were not significant in a series of in vitro tests. The stiffness of materials has been reported to greatly affect the response of macrophages, and the immunological regulation mediated by macrophages directly determines the fate of bone implants. Therefore, we designed more experiments to explore the role of three-dimensionally printed Ti2448 in macrophage activation and related osteogenesis and angiogenesis. As expected, we found a significant increase in the number of M2 macrophages around Ti2448 implants, as well as better osteogenesis and angiogenesis in vivo. In vitro studies also showed that macrophages pre-treated with Ti2448 alloy significantly promoted angiogenesis and osteogenic differentiation through increased PDGF-BB and BMP-2 secretion, and the polarization of M2 macrophages was enhanced. We deduced that Ti2448 promotes angiogenesis and osteogenesis through Piezo1/YAP signaling axis-mediated macrophage polarization and related cytokine secretion. This research might provide insight into the biological properties of Ti2448 and provide a powerful theoretical supplement for the future application of three-dimensionally printed Ti2448 implants in orthopaedic surgery.Zhen TangXinghui WeiTian LiHao WuXin XiaoYulin HaoShujun LiWentao HouLei ShiXiaokang LiZheng GuoFrontiers Media S.A.articleTi2448macrophagepolarizationangiogenesisosteogenesisBiology (General)QH301-705.5ENFrontiers in Cell and Developmental Biology, Vol 9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Ti2448 macrophage polarization angiogenesis osteogenesis Biology (General) QH301-705.5 |
spellingShingle |
Ti2448 macrophage polarization angiogenesis osteogenesis Biology (General) QH301-705.5 Zhen Tang Xinghui Wei Tian Li Hao Wu Xin Xiao Yulin Hao Shujun Li Wentao Hou Lei Shi Xiaokang Li Zheng Guo Three-Dimensionally Printed Ti2448 With Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis |
description |
Previous studies have found that the novel low-elastic-modulus Ti2448 alloy can significantly reduce stress shielding and contribute to better bone repair than the conventional Ti6Al4V alloy. In this study, the promotion of osteogenesis and angiogenesis by three-dimensionally printed Ti2448 were also observed in vivo. However, these were not significant in a series of in vitro tests. The stiffness of materials has been reported to greatly affect the response of macrophages, and the immunological regulation mediated by macrophages directly determines the fate of bone implants. Therefore, we designed more experiments to explore the role of three-dimensionally printed Ti2448 in macrophage activation and related osteogenesis and angiogenesis. As expected, we found a significant increase in the number of M2 macrophages around Ti2448 implants, as well as better osteogenesis and angiogenesis in vivo. In vitro studies also showed that macrophages pre-treated with Ti2448 alloy significantly promoted angiogenesis and osteogenic differentiation through increased PDGF-BB and BMP-2 secretion, and the polarization of M2 macrophages was enhanced. We deduced that Ti2448 promotes angiogenesis and osteogenesis through Piezo1/YAP signaling axis-mediated macrophage polarization and related cytokine secretion. This research might provide insight into the biological properties of Ti2448 and provide a powerful theoretical supplement for the future application of three-dimensionally printed Ti2448 implants in orthopaedic surgery. |
format |
article |
author |
Zhen Tang Xinghui Wei Tian Li Hao Wu Xin Xiao Yulin Hao Shujun Li Wentao Hou Lei Shi Xiaokang Li Zheng Guo |
author_facet |
Zhen Tang Xinghui Wei Tian Li Hao Wu Xin Xiao Yulin Hao Shujun Li Wentao Hou Lei Shi Xiaokang Li Zheng Guo |
author_sort |
Zhen Tang |
title |
Three-Dimensionally Printed Ti2448 With Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis |
title_short |
Three-Dimensionally Printed Ti2448 With Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis |
title_full |
Three-Dimensionally Printed Ti2448 With Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis |
title_fullStr |
Three-Dimensionally Printed Ti2448 With Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis |
title_full_unstemmed |
Three-Dimensionally Printed Ti2448 With Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis |
title_sort |
three-dimensionally printed ti2448 with low stiffness enhanced angiogenesis and osteogenesis by regulating macrophage polarization via piezo1/yap signaling axis |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/3c131f51aeab494b87faf882d2c6974e |
work_keys_str_mv |
AT zhentang threedimensionallyprintedti2448withlowstiffnessenhancedangiogenesisandosteogenesisbyregulatingmacrophagepolarizationviapiezo1yapsignalingaxis AT xinghuiwei threedimensionallyprintedti2448withlowstiffnessenhancedangiogenesisandosteogenesisbyregulatingmacrophagepolarizationviapiezo1yapsignalingaxis AT tianli threedimensionallyprintedti2448withlowstiffnessenhancedangiogenesisandosteogenesisbyregulatingmacrophagepolarizationviapiezo1yapsignalingaxis AT haowu threedimensionallyprintedti2448withlowstiffnessenhancedangiogenesisandosteogenesisbyregulatingmacrophagepolarizationviapiezo1yapsignalingaxis AT xinxiao threedimensionallyprintedti2448withlowstiffnessenhancedangiogenesisandosteogenesisbyregulatingmacrophagepolarizationviapiezo1yapsignalingaxis AT yulinhao threedimensionallyprintedti2448withlowstiffnessenhancedangiogenesisandosteogenesisbyregulatingmacrophagepolarizationviapiezo1yapsignalingaxis AT shujunli threedimensionallyprintedti2448withlowstiffnessenhancedangiogenesisandosteogenesisbyregulatingmacrophagepolarizationviapiezo1yapsignalingaxis AT wentaohou threedimensionallyprintedti2448withlowstiffnessenhancedangiogenesisandosteogenesisbyregulatingmacrophagepolarizationviapiezo1yapsignalingaxis AT leishi threedimensionallyprintedti2448withlowstiffnessenhancedangiogenesisandosteogenesisbyregulatingmacrophagepolarizationviapiezo1yapsignalingaxis AT xiaokangli threedimensionallyprintedti2448withlowstiffnessenhancedangiogenesisandosteogenesisbyregulatingmacrophagepolarizationviapiezo1yapsignalingaxis AT zhengguo threedimensionallyprintedti2448withlowstiffnessenhancedangiogenesisandosteogenesisbyregulatingmacrophagepolarizationviapiezo1yapsignalingaxis |
_version_ |
1718428801575157760 |