Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events

Abstract Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elizabeth P. V. Le, Leonardo Rundo, Jason M. Tarkin, Nicholas R. Evans, Mohammed M. Chowdhury, Patrick A. Coughlin, Holly Pavey, Chris Wall, Fulvio Zaccagna, Ferdia A. Gallagher, Yuan Huang, Rouchelle Sriranjan, Anthony Le, Jonathan R. Weir-McCall, Michael Roberts, Fiona J. Gilbert, Elizabeth A. Warburton, Carola-Bibiane Schönlieb, Evis Sala, James H. F. Rudd
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3c38d77b56a846ac9f44b3d1df1785f4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3c38d77b56a846ac9f44b3d1df1785f4
record_format dspace
spelling oai:doaj.org-article:3c38d77b56a846ac9f44b3d1df1785f42021-12-02T13:30:28ZAssessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events10.1038/s41598-021-82760-w2045-2322https://doaj.org/article/3c38d77b56a846ac9f44b3d1df1785f42021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82760-whttps://doaj.org/toc/2045-2322Abstract Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictive models, for good generalisability. We extracted 93 radiomic features from carotid artery computed tomography angiograms of 41 patients with cerebrovascular events. We tested feature robustness to region-of-interest perturbations, image pre-processing settings and quantisation methods using both single- and multi-slice approaches. We assessed the ability of the most robust features to identify culprit and non-culprit arteries using several machine learning algorithms and report the average area under the curve (AUC) from five-fold cross validation. Multi-slice features were superior to single for producing robust radiomic features (67 vs. 61). The optimal image quantisation method used bin widths of 25 or 30. Incorporating our top 10 non-redundant robust radiomics features into ElasticNet achieved an AUC of 0.73 and accuracy of 69% (compared to carotid calcification alone [AUC: 0.44, accuracy: 46%]). Our results provide key information for introducing carotid CT radiomics into clinical practice. If validated prospectively, our robust carotid radiomic set could improve stroke prediction and target therapies to those at highest risk.Elizabeth P. V. LeLeonardo RundoJason M. TarkinNicholas R. EvansMohammed M. ChowdhuryPatrick A. CoughlinHolly PaveyChris WallFulvio ZaccagnaFerdia A. GallagherYuan HuangRouchelle SriranjanAnthony LeJonathan R. Weir-McCallMichael RobertsFiona J. GilbertElizabeth A. WarburtonCarola-Bibiane SchönliebEvis SalaJames H. F. RuddNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Elizabeth P. V. Le
Leonardo Rundo
Jason M. Tarkin
Nicholas R. Evans
Mohammed M. Chowdhury
Patrick A. Coughlin
Holly Pavey
Chris Wall
Fulvio Zaccagna
Ferdia A. Gallagher
Yuan Huang
Rouchelle Sriranjan
Anthony Le
Jonathan R. Weir-McCall
Michael Roberts
Fiona J. Gilbert
Elizabeth A. Warburton
Carola-Bibiane Schönlieb
Evis Sala
James H. F. Rudd
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
description Abstract Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictive models, for good generalisability. We extracted 93 radiomic features from carotid artery computed tomography angiograms of 41 patients with cerebrovascular events. We tested feature robustness to region-of-interest perturbations, image pre-processing settings and quantisation methods using both single- and multi-slice approaches. We assessed the ability of the most robust features to identify culprit and non-culprit arteries using several machine learning algorithms and report the average area under the curve (AUC) from five-fold cross validation. Multi-slice features were superior to single for producing robust radiomic features (67 vs. 61). The optimal image quantisation method used bin widths of 25 or 30. Incorporating our top 10 non-redundant robust radiomics features into ElasticNet achieved an AUC of 0.73 and accuracy of 69% (compared to carotid calcification alone [AUC: 0.44, accuracy: 46%]). Our results provide key information for introducing carotid CT radiomics into clinical practice. If validated prospectively, our robust carotid radiomic set could improve stroke prediction and target therapies to those at highest risk.
format article
author Elizabeth P. V. Le
Leonardo Rundo
Jason M. Tarkin
Nicholas R. Evans
Mohammed M. Chowdhury
Patrick A. Coughlin
Holly Pavey
Chris Wall
Fulvio Zaccagna
Ferdia A. Gallagher
Yuan Huang
Rouchelle Sriranjan
Anthony Le
Jonathan R. Weir-McCall
Michael Roberts
Fiona J. Gilbert
Elizabeth A. Warburton
Carola-Bibiane Schönlieb
Evis Sala
James H. F. Rudd
author_facet Elizabeth P. V. Le
Leonardo Rundo
Jason M. Tarkin
Nicholas R. Evans
Mohammed M. Chowdhury
Patrick A. Coughlin
Holly Pavey
Chris Wall
Fulvio Zaccagna
Ferdia A. Gallagher
Yuan Huang
Rouchelle Sriranjan
Anthony Le
Jonathan R. Weir-McCall
Michael Roberts
Fiona J. Gilbert
Elizabeth A. Warburton
Carola-Bibiane Schönlieb
Evis Sala
James H. F. Rudd
author_sort Elizabeth P. V. Le
title Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
title_short Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
title_full Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
title_fullStr Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
title_full_unstemmed Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
title_sort assessing robustness of carotid artery ct angiography radiomics in the identification of culprit lesions in cerebrovascular events
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/3c38d77b56a846ac9f44b3d1df1785f4
work_keys_str_mv AT elizabethpvle assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT leonardorundo assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT jasonmtarkin assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT nicholasrevans assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT mohammedmchowdhury assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT patrickacoughlin assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT hollypavey assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT chriswall assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT fulviozaccagna assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT ferdiaagallagher assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT yuanhuang assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT rouchellesriranjan assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT anthonyle assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT jonathanrweirmccall assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT michaelroberts assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT fionajgilbert assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT elizabethawarburton assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT carolabibianeschonlieb assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT evissala assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT jameshfrudd assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
_version_ 1718392908482084864