Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
Abstract Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3c38d77b56a846ac9f44b3d1df1785f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3c38d77b56a846ac9f44b3d1df1785f4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3c38d77b56a846ac9f44b3d1df1785f42021-12-02T13:30:28ZAssessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events10.1038/s41598-021-82760-w2045-2322https://doaj.org/article/3c38d77b56a846ac9f44b3d1df1785f42021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82760-whttps://doaj.org/toc/2045-2322Abstract Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictive models, for good generalisability. We extracted 93 radiomic features from carotid artery computed tomography angiograms of 41 patients with cerebrovascular events. We tested feature robustness to region-of-interest perturbations, image pre-processing settings and quantisation methods using both single- and multi-slice approaches. We assessed the ability of the most robust features to identify culprit and non-culprit arteries using several machine learning algorithms and report the average area under the curve (AUC) from five-fold cross validation. Multi-slice features were superior to single for producing robust radiomic features (67 vs. 61). The optimal image quantisation method used bin widths of 25 or 30. Incorporating our top 10 non-redundant robust radiomics features into ElasticNet achieved an AUC of 0.73 and accuracy of 69% (compared to carotid calcification alone [AUC: 0.44, accuracy: 46%]). Our results provide key information for introducing carotid CT radiomics into clinical practice. If validated prospectively, our robust carotid radiomic set could improve stroke prediction and target therapies to those at highest risk.Elizabeth P. V. LeLeonardo RundoJason M. TarkinNicholas R. EvansMohammed M. ChowdhuryPatrick A. CoughlinHolly PaveyChris WallFulvio ZaccagnaFerdia A. GallagherYuan HuangRouchelle SriranjanAnthony LeJonathan R. Weir-McCallMichael RobertsFiona J. GilbertElizabeth A. WarburtonCarola-Bibiane SchönliebEvis SalaJames H. F. RuddNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Elizabeth P. V. Le Leonardo Rundo Jason M. Tarkin Nicholas R. Evans Mohammed M. Chowdhury Patrick A. Coughlin Holly Pavey Chris Wall Fulvio Zaccagna Ferdia A. Gallagher Yuan Huang Rouchelle Sriranjan Anthony Le Jonathan R. Weir-McCall Michael Roberts Fiona J. Gilbert Elizabeth A. Warburton Carola-Bibiane Schönlieb Evis Sala James H. F. Rudd Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
description |
Abstract Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictive models, for good generalisability. We extracted 93 radiomic features from carotid artery computed tomography angiograms of 41 patients with cerebrovascular events. We tested feature robustness to region-of-interest perturbations, image pre-processing settings and quantisation methods using both single- and multi-slice approaches. We assessed the ability of the most robust features to identify culprit and non-culprit arteries using several machine learning algorithms and report the average area under the curve (AUC) from five-fold cross validation. Multi-slice features were superior to single for producing robust radiomic features (67 vs. 61). The optimal image quantisation method used bin widths of 25 or 30. Incorporating our top 10 non-redundant robust radiomics features into ElasticNet achieved an AUC of 0.73 and accuracy of 69% (compared to carotid calcification alone [AUC: 0.44, accuracy: 46%]). Our results provide key information for introducing carotid CT radiomics into clinical practice. If validated prospectively, our robust carotid radiomic set could improve stroke prediction and target therapies to those at highest risk. |
format |
article |
author |
Elizabeth P. V. Le Leonardo Rundo Jason M. Tarkin Nicholas R. Evans Mohammed M. Chowdhury Patrick A. Coughlin Holly Pavey Chris Wall Fulvio Zaccagna Ferdia A. Gallagher Yuan Huang Rouchelle Sriranjan Anthony Le Jonathan R. Weir-McCall Michael Roberts Fiona J. Gilbert Elizabeth A. Warburton Carola-Bibiane Schönlieb Evis Sala James H. F. Rudd |
author_facet |
Elizabeth P. V. Le Leonardo Rundo Jason M. Tarkin Nicholas R. Evans Mohammed M. Chowdhury Patrick A. Coughlin Holly Pavey Chris Wall Fulvio Zaccagna Ferdia A. Gallagher Yuan Huang Rouchelle Sriranjan Anthony Le Jonathan R. Weir-McCall Michael Roberts Fiona J. Gilbert Elizabeth A. Warburton Carola-Bibiane Schönlieb Evis Sala James H. F. Rudd |
author_sort |
Elizabeth P. V. Le |
title |
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
title_short |
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
title_full |
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
title_fullStr |
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
title_full_unstemmed |
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
title_sort |
assessing robustness of carotid artery ct angiography radiomics in the identification of culprit lesions in cerebrovascular events |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3c38d77b56a846ac9f44b3d1df1785f4 |
work_keys_str_mv |
AT elizabethpvle assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT leonardorundo assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT jasonmtarkin assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT nicholasrevans assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT mohammedmchowdhury assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT patrickacoughlin assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT hollypavey assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT chriswall assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT fulviozaccagna assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT ferdiaagallagher assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT yuanhuang assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT rouchellesriranjan assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT anthonyle assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT jonathanrweirmccall assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT michaelroberts assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT fionajgilbert assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT elizabethawarburton assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT carolabibianeschonlieb assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT evissala assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT jameshfrudd assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents |
_version_ |
1718392908482084864 |