Deep Convolutional Neural Network Optimization for Defect Detection in Fabric Inspection
This research is aimed to detect defects on the surface of the fabric and deep learning model optimization. Since defect detection cannot effectively solve the fabric with complex background by image processing, this research uses deep learning to identify defects. However, the current network archi...
Guardado en:
Autores principales: | Chao-Ching Ho, Wei-Chi Chou, Eugene Su |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3c446f383b9e478dbd9367daba10c873 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)
por: Ahmed Bahaa Farid, et al.
Publicado: (2021) -
Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning
por: Ivan Kuric, et al.
Publicado: (2021) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
por: Leiyu Chen, et al.
Publicado: (2021) -
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
por: Emmanuel Pintelas, et al.
Publicado: (2021) -
Drain Structural Defect Detection and Mapping Using AI-Enabled Reconfigurable Robot Raptor and IoRT Framework
por: Povendhan Palanisamy, et al.
Publicado: (2021)