The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion

The content of heavy metals Cd, Cr, Cu, Fe, Ni, Pb and Zn in ash samples from miscanthus, oak, pine, sunflower husk, wheat straw, and willow ashes burned at 500, 600, 700, 800, 900, and 1000 °C, respectively, was determined. The statistical analysis of the results was based on multivariate methods:...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Małgorzata Szczepanik, Joanna Szyszlak-Bargłowicz, Grzegorz Zając, Adam Koniuszy, Małgorzata Hawrot-Paw, Artur Wolak
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
T
Accès en ligne:https://doaj.org/article/3c4a8c0352c3445a9ee8c1b0b15b7115
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id oai:doaj.org-article:3c4a8c0352c3445a9ee8c1b0b15b7115
record_format dspace
spelling oai:doaj.org-article:3c4a8c0352c3445a9ee8c1b0b15b71152021-11-11T15:44:01ZThe Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion10.3390/en142168871996-1073https://doaj.org/article/3c4a8c0352c3445a9ee8c1b0b15b71152021-10-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/21/6887https://doaj.org/toc/1996-1073The content of heavy metals Cd, Cr, Cu, Fe, Ni, Pb and Zn in ash samples from miscanthus, oak, pine, sunflower husk, wheat straw, and willow ashes burned at 500, 600, 700, 800, 900, and 1000 °C, respectively, was determined. The statistical analysis of the results was based on multivariate methods: hierarchical cluster analysis (HCA), and principal component analysis (PCA), which made it possible to classify the raw materials ashed at different temperatures into the most similar groups, and to study the structure of data variability. Using PCA, three principal components were extracted, which explain more than 88% of the variability of the studied elements. Therefore, it can be concluded that the application of multivariate statistical techniques to the analysis of the results of the study of heavy metal content allowed us to draw conclusions about the influence of biomass properties on its chemical characteristics during combustion.Małgorzata SzczepanikJoanna Szyszlak-BargłowiczGrzegorz ZającAdam KoniuszyMałgorzata Hawrot-PawArtur WolakMDPI AGarticleash compositionbiomassmultivariate data analysisTechnologyTENEnergies, Vol 14, Iss 6887, p 6887 (2021)
institution DOAJ
collection DOAJ
language EN
topic ash composition
biomass
multivariate data analysis
Technology
T
spellingShingle ash composition
biomass
multivariate data analysis
Technology
T
Małgorzata Szczepanik
Joanna Szyszlak-Bargłowicz
Grzegorz Zając
Adam Koniuszy
Małgorzata Hawrot-Paw
Artur Wolak
The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion
description The content of heavy metals Cd, Cr, Cu, Fe, Ni, Pb and Zn in ash samples from miscanthus, oak, pine, sunflower husk, wheat straw, and willow ashes burned at 500, 600, 700, 800, 900, and 1000 °C, respectively, was determined. The statistical analysis of the results was based on multivariate methods: hierarchical cluster analysis (HCA), and principal component analysis (PCA), which made it possible to classify the raw materials ashed at different temperatures into the most similar groups, and to study the structure of data variability. Using PCA, three principal components were extracted, which explain more than 88% of the variability of the studied elements. Therefore, it can be concluded that the application of multivariate statistical techniques to the analysis of the results of the study of heavy metal content allowed us to draw conclusions about the influence of biomass properties on its chemical characteristics during combustion.
format article
author Małgorzata Szczepanik
Joanna Szyszlak-Bargłowicz
Grzegorz Zając
Adam Koniuszy
Małgorzata Hawrot-Paw
Artur Wolak
author_facet Małgorzata Szczepanik
Joanna Szyszlak-Bargłowicz
Grzegorz Zając
Adam Koniuszy
Małgorzata Hawrot-Paw
Artur Wolak
author_sort Małgorzata Szczepanik
title The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion
title_short The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion
title_full The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion
title_fullStr The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion
title_full_unstemmed The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion
title_sort use of multivariate data analysis (hca and pca) to characterize ashes from biomass combustion
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/3c4a8c0352c3445a9ee8c1b0b15b7115
work_keys_str_mv AT małgorzataszczepanik theuseofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
AT joannaszyszlakbargłowicz theuseofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
AT grzegorzzajac theuseofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
AT adamkoniuszy theuseofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
AT małgorzatahawrotpaw theuseofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
AT arturwolak theuseofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
AT małgorzataszczepanik useofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
AT joannaszyszlakbargłowicz useofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
AT grzegorzzajac useofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
AT adamkoniuszy useofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
AT małgorzatahawrotpaw useofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
AT arturwolak useofmultivariatedataanalysishcaandpcatocharacterizeashesfrombiomasscombustion
_version_ 1718434078503469056