A deep-learning framework for multi-level peptide–protein interaction prediction
Peptide-protein interactions play fundamental roles in cellular processes and are crucial for designing peptide therapeutics. Here, the authors present a deep learning framework for simultaneously predicting peptide-protein interactions and identifying peptide binding residues involved in the intera...
Guardado en:
Autores principales: | Yipin Lei, Shuya Li, Ziyi Liu, Fangping Wan, Tingzhong Tian, Shao Li, Dan Zhao, Jianyang Zeng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3c57279c8dca432e92343f39c256dd79 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-level analysis framework for reviewing IDT-based studies
por: Mahdi Omidi, et al.
Publicado: (2017) -
A multi-phase deep CNN based mitosis detection framework for breast cancer histopathological images
por: Anabia Sohail, et al.
Publicado: (2021) -
A deep learning based framework for the registration of three dimensional multi-modal medical images of the head
por: Kh Tohidul Islam, et al.
Publicado: (2021) -
GSS-RiskAsser: A Multi-Modal Deep-Learning Framework for Urban Gas Supply System Risk Assessment on Business Users
por: Xuefei Li, et al.
Publicado: (2021) -
Multi-label Learning for Predicting the Activities of Antimicrobial Peptides
por: Pu Wang, et al.
Publicado: (2017)