A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium falciparum candidate areas in digitized blood smears.
<h4>Introduction</h4>Microscopy is the gold standard for diagnosis of malaria, however, manual evaluation of blood films is highly dependent on skilled personnel in a time-consuming, error-prone and repetitive process. In this study we propose a method using computer vision detection and...
Guardado en:
Autores principales: | Nina Linder, Riku Turkki, Margarita Walliander, Andreas Mårtensson, Vinod Diwan, Esa Rahtu, Matti Pietikäinen, Mikael Lundin, Johan Lundin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3c5ef5a36a884e74816fcef2a6783a27 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
In silico characterisation of putative Plasmodium falciparum vaccine candidates in African malaria populations
por: O. Ajibola, et al.
Publicado: (2021) -
Diagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images
por: Yasmin M. Kassim, et al.
Publicado: (2021) -
Malaria congénita por Plasmodium falciparum
por: Del Castillo Calderón,José Gabriel, et al.
Publicado: (2020) -
Plasmodium falciparum malaria endemicity in Indonesia in 2010.
por: Iqbal R F Elyazar, et al.
Publicado: (2011) -
Predictors of outcome in childhood Plasmodium falciparum malaria
por: Harsita Patel, et al.
Publicado: (2020)