An ensemble method for predicting subnuclear localizations from primary protein structures.
<h4>Background</h4>Predicting protein subnuclear localization is a challenging problem. Some previous works based on non-sequence information including Gene Ontology annotations and kernel fusion have respective limitations. The aim of this work is twofold: one is to propose a novel indi...
Enregistré dans:
Auteurs principaux: | Guo Sheng Han, Zu Guo Yu, Vo Anh, Anaththa P D Krishnajith, Yu-Chu Tian |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2013
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3c6730d3dbd840c8b04b6d6f85b8859e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Chromatin topology is coupled to Polycomb group protein subnuclear organization
par: Ajazul H. Wani, et autres
Publié: (2016) -
Subnuclear gene positioning through lamina association affects copper tolerance
par: Yuki Sakamoto, et autres
Publié: (2020) -
Analyzing multi-locus plant barcoding datasets with a composition vector method based on adjustable weighted distance.
par: Chi Pang Li, et autres
Publié: (2012) -
Computational prediction of conformational B-cell epitopes from antigen primary structures by ensemble learning.
par: Wen Zhang, et autres
Publié: (2012) -
Breast cancer recurrence prediction with ensemble methods and cost-sensitive learning
par: Yang Pei-Tse, et autres
Publié: (2021)