Sol–Gel Synthesis and Characterization of YSZ Nanofillers for Dental Cements at Different Temperatures

Background: Yttria-stabilized zirconia nanoparticles can be applied as fillers to improve the mechanical and antibacterial properties of luting cement. The aim of this study was to synthesize yttria-stabilized zirconia nanoparticles by the sol–gel method and to investigate their composition, structu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anastasia Beketova, Anna Theocharidou, Ioannis Tsamesidis, Athanasios E. Rigos, Georgia K. Pouroutzidou, Emmanouil-George C. Tzanakakis, Dimitra Kourtidou, Liliana Liverani, Marcela Arango Ospina, Antonios Anastasiou, Ioannis G. Tzoutzas, Eleana Kontonasaki
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/3c9211c077684df4ba84025d753136c8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Background: Yttria-stabilized zirconia nanoparticles can be applied as fillers to improve the mechanical and antibacterial properties of luting cement. The aim of this study was to synthesize yttria-stabilized zirconia nanoparticles by the sol–gel method and to investigate their composition, structure, morphology and biological properties. Methods: Nanopowders of ZrO<sub>2</sub> 7 wt% Y<sub>2</sub>O<sub>3</sub> (nY-ZrO) were synthesized by the sol–gel method and were sintered at three different temperatures: 800, 1000 and 1200 °C, and their composition, size and morphology were investigated. The biocompatibility was investigated with human gingival fibroblasts (hGFs), while reactive oxygen species (ROS) production was evaluated through fluorescence analysis. Results: All synthesized materials were composed of tetragonal zirconia, while nanopowders sintered at 800 °C and 1000 °C additionally contained 5 and 20 wt% of the cubic phase. By increasing the calcination temperature, the crystalline size of the nanoparticles increased from 12.1 nm for nY-ZrO800 to 47.2 nm for nY-ZrO1200. Nano-sized particles with good dispersion and low agglomeration were received. Cell culture studies with human gingival fibroblasts verified the nanopowders’ biocompatibility and their ROS scavenging activity. Conclusions: the obtained sol–gel derived nanopowders showed suitable properties to be potentially used as nanofillers for dental luting cement.