Study of microcomb threshold power with coupling scaling

Abstract We model the generation threshold and conversion efficiency of microcombs by scaling the cavity coupling. With the Lugiato–Lefever equation (LLE), quantitative analysis of threshold is established in the parameter space of pump power and coupling. Considering the large detuning and Kerr-ind...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pei-Hsun Wang, Kuan-Lin Chiang, Zong-Ren Yang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3c93a9aab9364d56a21feff92dd8e1a3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We model the generation threshold and conversion efficiency of microcombs by scaling the cavity coupling. With the Lugiato–Lefever equation (LLE), quantitative analysis of threshold is established in the parameter space of pump power and coupling. Considering the large detuning and Kerr-induced phase shift, the threshold power is numerically solved with the minimum at over-coupling, in agreement with that from the traveling wave theory. Furthermore, the coupling dependence on microcomb generation is discussed, providing the accessibility of high-efficient, stable combs (≥ 40%) around the threshold. This work offers universal guidelines for the design of microcombs with low-power and high-efficient operation.