Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators

Laser-plasma accelerators (LPAs) now routinely produce electron beams with GeV energies over acceleration lengths on the order of a few centimeters. This capability and the demonstration of multistage coupling make LPAs promising for numerous applications. However, beam quality preservation in multi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Zingale, N. Czapla, D. M. Nasir, S. K. Barber, J. H. Bin, A. J. Gonsalves, F. Isono, J. van Tilborg, S. Steinke, K. Nakamura, G. E. Cochran, J. Purcell, W. P. Leemans, C. G. R. Geddes, C. B. Schroeder, E. Esarey, D. W. Schumacher
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/3ca8f70a5a3f4397bc46e6b1975a1432
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3ca8f70a5a3f4397bc46e6b1975a1432
record_format dspace
spelling oai:doaj.org-article:3ca8f70a5a3f4397bc46e6b1975a14322021-12-02T16:41:15ZEmittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators10.1103/PhysRevAccelBeams.24.1213012469-9888https://doaj.org/article/3ca8f70a5a3f4397bc46e6b1975a14322021-12-01T00:00:00Zhttp://doi.org/10.1103/PhysRevAccelBeams.24.121301http://doi.org/10.1103/PhysRevAccelBeams.24.121301https://doaj.org/toc/2469-9888Laser-plasma accelerators (LPAs) now routinely produce electron beams with GeV energies over acceleration lengths on the order of a few centimeters. This capability and the demonstration of multistage coupling make LPAs promising for numerous applications. However, beam quality preservation in multistage accelerators remains an obstacle because of the need to separate the laser pulse from the electron beam. Plasma mirrors can be used to redirect the laser pulse, but their substrate thickness threatens to substantially degrade the electron beam emittance. Ultrathin (∼20  nm) liquid crystal (LC) plasma mirrors are an excellent candidate to address this challenge. This work investigates the robustness of thin LC plasma mirrors in the presence of capillary discharge plasma and an auxiliary heater laser. We find they can be operated ∼10  cm from the capillary exit when a heater laser is used. We then performed a normalized emittance measurement enabled using a 20 nm LC plasma mirror to protect electron beam optics after the LPA. The emittance contribution from scattering through the plasma mirror is calculated to be of order 100 nm, much less than the measured emittance of 4.0  μm. Finally, we develop a model to calculate plasma mirror performance based on the laser polarization and intensity, and plasma mirror thickness.A. ZingaleN. CzaplaD. M. NasirS. K. BarberJ. H. BinA. J. GonsalvesF. IsonoJ. van TilborgS. SteinkeK. NakamuraG. E. CochranJ. PurcellW. P. LeemansC. G. R. GeddesC. B. SchroederE. EsareyD. W. SchumacherAmerican Physical SocietyarticleNuclear and particle physics. Atomic energy. RadioactivityQC770-798ENPhysical Review Accelerators and Beams, Vol 24, Iss 12, p 121301 (2021)
institution DOAJ
collection DOAJ
language EN
topic Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
spellingShingle Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
A. Zingale
N. Czapla
D. M. Nasir
S. K. Barber
J. H. Bin
A. J. Gonsalves
F. Isono
J. van Tilborg
S. Steinke
K. Nakamura
G. E. Cochran
J. Purcell
W. P. Leemans
C. G. R. Geddes
C. B. Schroeder
E. Esarey
D. W. Schumacher
Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators
description Laser-plasma accelerators (LPAs) now routinely produce electron beams with GeV energies over acceleration lengths on the order of a few centimeters. This capability and the demonstration of multistage coupling make LPAs promising for numerous applications. However, beam quality preservation in multistage accelerators remains an obstacle because of the need to separate the laser pulse from the electron beam. Plasma mirrors can be used to redirect the laser pulse, but their substrate thickness threatens to substantially degrade the electron beam emittance. Ultrathin (∼20  nm) liquid crystal (LC) plasma mirrors are an excellent candidate to address this challenge. This work investigates the robustness of thin LC plasma mirrors in the presence of capillary discharge plasma and an auxiliary heater laser. We find they can be operated ∼10  cm from the capillary exit when a heater laser is used. We then performed a normalized emittance measurement enabled using a 20 nm LC plasma mirror to protect electron beam optics after the LPA. The emittance contribution from scattering through the plasma mirror is calculated to be of order 100 nm, much less than the measured emittance of 4.0  μm. Finally, we develop a model to calculate plasma mirror performance based on the laser polarization and intensity, and plasma mirror thickness.
format article
author A. Zingale
N. Czapla
D. M. Nasir
S. K. Barber
J. H. Bin
A. J. Gonsalves
F. Isono
J. van Tilborg
S. Steinke
K. Nakamura
G. E. Cochran
J. Purcell
W. P. Leemans
C. G. R. Geddes
C. B. Schroeder
E. Esarey
D. W. Schumacher
author_facet A. Zingale
N. Czapla
D. M. Nasir
S. K. Barber
J. H. Bin
A. J. Gonsalves
F. Isono
J. van Tilborg
S. Steinke
K. Nakamura
G. E. Cochran
J. Purcell
W. P. Leemans
C. G. R. Geddes
C. B. Schroeder
E. Esarey
D. W. Schumacher
author_sort A. Zingale
title Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators
title_short Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators
title_full Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators
title_fullStr Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators
title_full_unstemmed Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators
title_sort emittance preserving thin film plasma mirrors for gev scale laser plasma accelerators
publisher American Physical Society
publishDate 2021
url https://doaj.org/article/3ca8f70a5a3f4397bc46e6b1975a1432
work_keys_str_mv AT azingale emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT nczapla emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT dmnasir emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT skbarber emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT jhbin emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT ajgonsalves emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT fisono emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT jvantilborg emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT ssteinke emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT knakamura emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT gecochran emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT jpurcell emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT wpleemans emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT cgrgeddes emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT cbschroeder emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT eesarey emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
AT dwschumacher emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators
_version_ 1718383568102621184