Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators
Laser-plasma accelerators (LPAs) now routinely produce electron beams with GeV energies over acceleration lengths on the order of a few centimeters. This capability and the demonstration of multistage coupling make LPAs promising for numerous applications. However, beam quality preservation in multi...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ca8f70a5a3f4397bc46e6b1975a1432 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3ca8f70a5a3f4397bc46e6b1975a1432 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3ca8f70a5a3f4397bc46e6b1975a14322021-12-02T16:41:15ZEmittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators10.1103/PhysRevAccelBeams.24.1213012469-9888https://doaj.org/article/3ca8f70a5a3f4397bc46e6b1975a14322021-12-01T00:00:00Zhttp://doi.org/10.1103/PhysRevAccelBeams.24.121301http://doi.org/10.1103/PhysRevAccelBeams.24.121301https://doaj.org/toc/2469-9888Laser-plasma accelerators (LPAs) now routinely produce electron beams with GeV energies over acceleration lengths on the order of a few centimeters. This capability and the demonstration of multistage coupling make LPAs promising for numerous applications. However, beam quality preservation in multistage accelerators remains an obstacle because of the need to separate the laser pulse from the electron beam. Plasma mirrors can be used to redirect the laser pulse, but their substrate thickness threatens to substantially degrade the electron beam emittance. Ultrathin (∼20 nm) liquid crystal (LC) plasma mirrors are an excellent candidate to address this challenge. This work investigates the robustness of thin LC plasma mirrors in the presence of capillary discharge plasma and an auxiliary heater laser. We find they can be operated ∼10 cm from the capillary exit when a heater laser is used. We then performed a normalized emittance measurement enabled using a 20 nm LC plasma mirror to protect electron beam optics after the LPA. The emittance contribution from scattering through the plasma mirror is calculated to be of order 100 nm, much less than the measured emittance of 4.0 μm. Finally, we develop a model to calculate plasma mirror performance based on the laser polarization and intensity, and plasma mirror thickness.A. ZingaleN. CzaplaD. M. NasirS. K. BarberJ. H. BinA. J. GonsalvesF. IsonoJ. van TilborgS. SteinkeK. NakamuraG. E. CochranJ. PurcellW. P. LeemansC. G. R. GeddesC. B. SchroederE. EsareyD. W. SchumacherAmerican Physical SocietyarticleNuclear and particle physics. Atomic energy. RadioactivityQC770-798ENPhysical Review Accelerators and Beams, Vol 24, Iss 12, p 121301 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 |
spellingShingle |
Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 A. Zingale N. Czapla D. M. Nasir S. K. Barber J. H. Bin A. J. Gonsalves F. Isono J. van Tilborg S. Steinke K. Nakamura G. E. Cochran J. Purcell W. P. Leemans C. G. R. Geddes C. B. Schroeder E. Esarey D. W. Schumacher Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators |
description |
Laser-plasma accelerators (LPAs) now routinely produce electron beams with GeV energies over acceleration lengths on the order of a few centimeters. This capability and the demonstration of multistage coupling make LPAs promising for numerous applications. However, beam quality preservation in multistage accelerators remains an obstacle because of the need to separate the laser pulse from the electron beam. Plasma mirrors can be used to redirect the laser pulse, but their substrate thickness threatens to substantially degrade the electron beam emittance. Ultrathin (∼20 nm) liquid crystal (LC) plasma mirrors are an excellent candidate to address this challenge. This work investigates the robustness of thin LC plasma mirrors in the presence of capillary discharge plasma and an auxiliary heater laser. We find they can be operated ∼10 cm from the capillary exit when a heater laser is used. We then performed a normalized emittance measurement enabled using a 20 nm LC plasma mirror to protect electron beam optics after the LPA. The emittance contribution from scattering through the plasma mirror is calculated to be of order 100 nm, much less than the measured emittance of 4.0 μm. Finally, we develop a model to calculate plasma mirror performance based on the laser polarization and intensity, and plasma mirror thickness. |
format |
article |
author |
A. Zingale N. Czapla D. M. Nasir S. K. Barber J. H. Bin A. J. Gonsalves F. Isono J. van Tilborg S. Steinke K. Nakamura G. E. Cochran J. Purcell W. P. Leemans C. G. R. Geddes C. B. Schroeder E. Esarey D. W. Schumacher |
author_facet |
A. Zingale N. Czapla D. M. Nasir S. K. Barber J. H. Bin A. J. Gonsalves F. Isono J. van Tilborg S. Steinke K. Nakamura G. E. Cochran J. Purcell W. P. Leemans C. G. R. Geddes C. B. Schroeder E. Esarey D. W. Schumacher |
author_sort |
A. Zingale |
title |
Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators |
title_short |
Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators |
title_full |
Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators |
title_fullStr |
Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators |
title_full_unstemmed |
Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators |
title_sort |
emittance preserving thin film plasma mirrors for gev scale laser plasma accelerators |
publisher |
American Physical Society |
publishDate |
2021 |
url |
https://doaj.org/article/3ca8f70a5a3f4397bc46e6b1975a1432 |
work_keys_str_mv |
AT azingale emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT nczapla emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT dmnasir emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT skbarber emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT jhbin emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT ajgonsalves emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT fisono emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT jvantilborg emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT ssteinke emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT knakamura emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT gecochran emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT jpurcell emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT wpleemans emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT cgrgeddes emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT cbschroeder emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT eesarey emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators AT dwschumacher emittancepreservingthinfilmplasmamirrorsforgevscalelaserplasmaaccelerators |
_version_ |
1718383568102621184 |