On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model

The rough Heston model is a form of a stochastic Volterra equation, which was proposed to model stock price volatility. It captures some important qualities that can be observed in the financial market—highly endogenous, statistical arbitrages prevention, liquidity asymmetry, and metaorders. Unlike...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Siow Woon Jeng, Adem Kiliçman
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/3ca982ddfe134bbe98194196282c8b02
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3ca982ddfe134bbe98194196282c8b02
record_format dspace
spelling oai:doaj.org-article:3ca982ddfe134bbe98194196282c8b022021-11-25T18:17:15ZOn Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model10.3390/math92229302227-7390https://doaj.org/article/3ca982ddfe134bbe98194196282c8b022021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2930https://doaj.org/toc/2227-7390The rough Heston model is a form of a stochastic Volterra equation, which was proposed to model stock price volatility. It captures some important qualities that can be observed in the financial market—highly endogenous, statistical arbitrages prevention, liquidity asymmetry, and metaorders. Unlike stochastic differential equation, the stochastic Volterra equation is extremely computationally expensive to simulate. In other words, it is difficult to compute option prices under the rough Heston model by conventional Monte Carlo simulation. In this paper, we prove that Euler’s discretization method for the stochastic Volterra equation with non-Lipschitz diffusion coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">E</mi><mo>[</mo><mo>|</mo><msub><mi>V</mi><mi>t</mi></msub><mo>−</mo><msubsup><mi>V</mi><mi>t</mi><mi>n</mi></msubsup><msup><mo>|</mo><mi>p</mi></msup><mo>]</mo></mrow></semantics></math></inline-formula> is finitely bounded by an exponential function of <i>t</i>. Furthermore, the weak error <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi mathvariant="double-struck">E</mi><mo>[</mo><msub><mi>V</mi><mi>t</mi></msub><mo>−</mo><msubsup><mi>V</mi><mi>t</mi><mi>n</mi></msubsup><mo>]</mo><mo>|</mo></mrow></semantics></math></inline-formula> and convergence for the stochastic Volterra equation are proven at the rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>n</mi><mrow><mo>−</mo><mi>H</mi></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula>. In addition, we propose a mixed Monte Carlo method, using the control variate and multilevel methods. The numerical experiments indicate that the proposed method is capable of achieving a substantial cost-adjusted variance reduction up to 17 times, and it is better than its predecessor individual methods in terms of cost-adjusted performance. Due to the cost-adjusted basis for our numerical experiment, the result also indicates a high possibility of potential use in practice.Siow Woon JengAdem KiliçmanMDPI AGarticlerough Heston modelweak convergence error rateMonte Carlo methodcontrol variate methodmultilevel Monte Carlo methodMathematicsQA1-939ENMathematics, Vol 9, Iss 2930, p 2930 (2021)
institution DOAJ
collection DOAJ
language EN
topic rough Heston model
weak convergence error rate
Monte Carlo method
control variate method
multilevel Monte Carlo method
Mathematics
QA1-939
spellingShingle rough Heston model
weak convergence error rate
Monte Carlo method
control variate method
multilevel Monte Carlo method
Mathematics
QA1-939
Siow Woon Jeng
Adem Kiliçman
On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model
description The rough Heston model is a form of a stochastic Volterra equation, which was proposed to model stock price volatility. It captures some important qualities that can be observed in the financial market—highly endogenous, statistical arbitrages prevention, liquidity asymmetry, and metaorders. Unlike stochastic differential equation, the stochastic Volterra equation is extremely computationally expensive to simulate. In other words, it is difficult to compute option prices under the rough Heston model by conventional Monte Carlo simulation. In this paper, we prove that Euler’s discretization method for the stochastic Volterra equation with non-Lipschitz diffusion coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">E</mi><mo>[</mo><mo>|</mo><msub><mi>V</mi><mi>t</mi></msub><mo>−</mo><msubsup><mi>V</mi><mi>t</mi><mi>n</mi></msubsup><msup><mo>|</mo><mi>p</mi></msup><mo>]</mo></mrow></semantics></math></inline-formula> is finitely bounded by an exponential function of <i>t</i>. Furthermore, the weak error <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi mathvariant="double-struck">E</mi><mo>[</mo><msub><mi>V</mi><mi>t</mi></msub><mo>−</mo><msubsup><mi>V</mi><mi>t</mi><mi>n</mi></msubsup><mo>]</mo><mo>|</mo></mrow></semantics></math></inline-formula> and convergence for the stochastic Volterra equation are proven at the rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>n</mi><mrow><mo>−</mo><mi>H</mi></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula>. In addition, we propose a mixed Monte Carlo method, using the control variate and multilevel methods. The numerical experiments indicate that the proposed method is capable of achieving a substantial cost-adjusted variance reduction up to 17 times, and it is better than its predecessor individual methods in terms of cost-adjusted performance. Due to the cost-adjusted basis for our numerical experiment, the result also indicates a high possibility of potential use in practice.
format article
author Siow Woon Jeng
Adem Kiliçman
author_facet Siow Woon Jeng
Adem Kiliçman
author_sort Siow Woon Jeng
title On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model
title_short On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model
title_full On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model
title_fullStr On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model
title_full_unstemmed On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model
title_sort on multilevel and control variate monte carlo methods for option pricing under the rough heston model
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/3ca982ddfe134bbe98194196282c8b02
work_keys_str_mv AT siowwoonjeng onmultilevelandcontrolvariatemontecarlomethodsforoptionpricingundertheroughhestonmodel
AT ademkilicman onmultilevelandcontrolvariatemontecarlomethodsforoptionpricingundertheroughhestonmodel
_version_ 1718411373422051328