On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model
The rough Heston model is a form of a stochastic Volterra equation, which was proposed to model stock price volatility. It captures some important qualities that can be observed in the financial market—highly endogenous, statistical arbitrages prevention, liquidity asymmetry, and metaorders. Unlike...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ca982ddfe134bbe98194196282c8b02 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3ca982ddfe134bbe98194196282c8b02 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3ca982ddfe134bbe98194196282c8b022021-11-25T18:17:15ZOn Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model10.3390/math92229302227-7390https://doaj.org/article/3ca982ddfe134bbe98194196282c8b022021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2930https://doaj.org/toc/2227-7390The rough Heston model is a form of a stochastic Volterra equation, which was proposed to model stock price volatility. It captures some important qualities that can be observed in the financial market—highly endogenous, statistical arbitrages prevention, liquidity asymmetry, and metaorders. Unlike stochastic differential equation, the stochastic Volterra equation is extremely computationally expensive to simulate. In other words, it is difficult to compute option prices under the rough Heston model by conventional Monte Carlo simulation. In this paper, we prove that Euler’s discretization method for the stochastic Volterra equation with non-Lipschitz diffusion coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">E</mi><mo>[</mo><mo>|</mo><msub><mi>V</mi><mi>t</mi></msub><mo>−</mo><msubsup><mi>V</mi><mi>t</mi><mi>n</mi></msubsup><msup><mo>|</mo><mi>p</mi></msup><mo>]</mo></mrow></semantics></math></inline-formula> is finitely bounded by an exponential function of <i>t</i>. Furthermore, the weak error <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi mathvariant="double-struck">E</mi><mo>[</mo><msub><mi>V</mi><mi>t</mi></msub><mo>−</mo><msubsup><mi>V</mi><mi>t</mi><mi>n</mi></msubsup><mo>]</mo><mo>|</mo></mrow></semantics></math></inline-formula> and convergence for the stochastic Volterra equation are proven at the rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>n</mi><mrow><mo>−</mo><mi>H</mi></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula>. In addition, we propose a mixed Monte Carlo method, using the control variate and multilevel methods. The numerical experiments indicate that the proposed method is capable of achieving a substantial cost-adjusted variance reduction up to 17 times, and it is better than its predecessor individual methods in terms of cost-adjusted performance. Due to the cost-adjusted basis for our numerical experiment, the result also indicates a high possibility of potential use in practice.Siow Woon JengAdem KiliçmanMDPI AGarticlerough Heston modelweak convergence error rateMonte Carlo methodcontrol variate methodmultilevel Monte Carlo methodMathematicsQA1-939ENMathematics, Vol 9, Iss 2930, p 2930 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
rough Heston model weak convergence error rate Monte Carlo method control variate method multilevel Monte Carlo method Mathematics QA1-939 |
spellingShingle |
rough Heston model weak convergence error rate Monte Carlo method control variate method multilevel Monte Carlo method Mathematics QA1-939 Siow Woon Jeng Adem Kiliçman On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model |
description |
The rough Heston model is a form of a stochastic Volterra equation, which was proposed to model stock price volatility. It captures some important qualities that can be observed in the financial market—highly endogenous, statistical arbitrages prevention, liquidity asymmetry, and metaorders. Unlike stochastic differential equation, the stochastic Volterra equation is extremely computationally expensive to simulate. In other words, it is difficult to compute option prices under the rough Heston model by conventional Monte Carlo simulation. In this paper, we prove that Euler’s discretization method for the stochastic Volterra equation with non-Lipschitz diffusion coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">E</mi><mo>[</mo><mo>|</mo><msub><mi>V</mi><mi>t</mi></msub><mo>−</mo><msubsup><mi>V</mi><mi>t</mi><mi>n</mi></msubsup><msup><mo>|</mo><mi>p</mi></msup><mo>]</mo></mrow></semantics></math></inline-formula> is finitely bounded by an exponential function of <i>t</i>. Furthermore, the weak error <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi mathvariant="double-struck">E</mi><mo>[</mo><msub><mi>V</mi><mi>t</mi></msub><mo>−</mo><msubsup><mi>V</mi><mi>t</mi><mi>n</mi></msubsup><mo>]</mo><mo>|</mo></mrow></semantics></math></inline-formula> and convergence for the stochastic Volterra equation are proven at the rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>n</mi><mrow><mo>−</mo><mi>H</mi></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula>. In addition, we propose a mixed Monte Carlo method, using the control variate and multilevel methods. The numerical experiments indicate that the proposed method is capable of achieving a substantial cost-adjusted variance reduction up to 17 times, and it is better than its predecessor individual methods in terms of cost-adjusted performance. Due to the cost-adjusted basis for our numerical experiment, the result also indicates a high possibility of potential use in practice. |
format |
article |
author |
Siow Woon Jeng Adem Kiliçman |
author_facet |
Siow Woon Jeng Adem Kiliçman |
author_sort |
Siow Woon Jeng |
title |
On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model |
title_short |
On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model |
title_full |
On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model |
title_fullStr |
On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model |
title_full_unstemmed |
On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model |
title_sort |
on multilevel and control variate monte carlo methods for option pricing under the rough heston model |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/3ca982ddfe134bbe98194196282c8b02 |
work_keys_str_mv |
AT siowwoonjeng onmultilevelandcontrolvariatemontecarlomethodsforoptionpricingundertheroughhestonmodel AT ademkilicman onmultilevelandcontrolvariatemontecarlomethodsforoptionpricingundertheroughhestonmodel |
_version_ |
1718411373422051328 |