Trajectory Planning for a Mobile Robot in a Dynamic Environment Using an LSTM Neural Network
Autonomous mobile robots are an important focus of current research due to the advantages they bring to the industry, such as performing dangerous tasks with greater precision than humans. An autonomous mobile robot must be able to generate a collision-free trajectory while avoiding static and dynam...
Guardado en:
Autores principales: | Alejandra Molina-Leal, Alfonso Gómez-Espinosa, Jesús Arturo Escobedo Cabello, Enrique Cuan-Urquizo, Sergio R. Cruz-Ramírez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ccd13899eab42eabd62f274844e3983 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Obstacles Avoidance for Mobile Robot Using Enhanced Artificial Potential Field
por: Mustaffa Waad Abbas, et al.
Publicado: (2013) -
Obstacles Avoidance for Mobile Robot Using Enhanced Artificial Potential Field
por: Mohamed Jasim Mohamed, et al.
Publicado: (2017) -
Guiding Mobile Robot by Applying Fuzzy Approach on Sonar Sensors
por: Ahmed Rahman Jasim, et al.
Publicado: (2010) -
Single-Loop Full R Joints of Multi-Mode Omnidirectional Ground Mobile Robot
por: Chunyan Zhang*, et al.
Publicado: (2021) -
Path Planning of an autonomous Mobile Robot using Swarm Based Optimization Techniques
por: Ibraheem Kasim Ibraheem, et al.
Publicado: (2017)