Decoding defect statistics from diffractograms via machine learning

Abstract Diffraction techniques can powerfully and nondestructively probe materials while maintaining high resolution in both space and time. Unfortunately, these characterizations have been limited and sometimes even erroneous due to the difficulty of decoding the desired material information from...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Cody Kunka, Apaar Shanker, Elton Y. Chen, Surya R. Kalidindi, Rémi Dingreville
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/3cd3950f2ddd406b92a130b336fb6701
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!