Decoding defect statistics from diffractograms via machine learning
Abstract Diffraction techniques can powerfully and nondestructively probe materials while maintaining high resolution in both space and time. Unfortunately, these characterizations have been limited and sometimes even erroneous due to the difficulty of decoding the desired material information from...
Guardado en:
Autores principales: | Cody Kunka, Apaar Shanker, Elton Y. Chen, Surya R. Kalidindi, Rémi Dingreville |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3cd3950f2ddd406b92a130b336fb6701 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods
por: David Montes de Oca Zapiain, et al.
Publicado: (2021) -
Evolutionary computing and machine learning for discovering of low-energy defect configurations
por: Marco Arrigoni, et al.
Publicado: (2021) -
Intersystem crossing and exciton–defect coupling of spin defects in hexagonal boron nitride
por: Tyler J. Smart, et al.
Publicado: (2021) -
Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning
por: Bharat Medasani, et al.
Publicado: (2016) -
Correcting the corrections for charged defects in crystals
por: Aron Walsh
Publicado: (2021)