Decoding defect statistics from diffractograms via machine learning

Abstract Diffraction techniques can powerfully and nondestructively probe materials while maintaining high resolution in both space and time. Unfortunately, these characterizations have been limited and sometimes even erroneous due to the difficulty of decoding the desired material information from...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cody Kunka, Apaar Shanker, Elton Y. Chen, Surya R. Kalidindi, Rémi Dingreville
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/3cd3950f2ddd406b92a130b336fb6701
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!