Comprehensive machine learning based study of the chemical space of herbicides
Abstract Widespread use of herbicides results in the global increase in weed resistance. The rotational use of herbicides according to their modes of action (MoAs) and discovery of novel phytotoxic molecules are the two strategies used against the weed resistance. Herein, Random Forest modeling was...
Guardado en:
Autores principales: | Davor Oršolić, Vesna Pehar, Tomislav Šmuc, Višnja Stepanić |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ce6d67198584709bdb4bef84fa4059e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning in chemical reaction space
por: Sina Stocker, et al.
Publicado: (2020) -
Exploring the chemical space of protein–protein interaction inhibitors through machine learning
por: Jiwon Choi, et al.
Publicado: (2021) -
Predicting cell-penetrating peptides using machine learning algorithms and navigating in their chemical space
por: Ewerton Cristhian Lima de Oliveira, et al.
Publicado: (2021) -
Machine learning for chemical discovery
por: Alexandre Tkatchenko
Publicado: (2020) -
Study on RNAi-based herbicide for Mikania micrantha
por: Jiantao Mai, et al.
Publicado: (2021)