MFI-Net: A multi-resolution fusion input network for retinal vessel segmentation.
Segmentation of retinal vessels is important for doctors to diagnose some diseases. The segmentation accuracy of retinal vessels can be effectively improved by using deep learning methods. However, most of the existing methods are incomplete for shallow feature extraction, and some superficial featu...
Guardado en:
Autores principales: | Yun Jiang, Chao Wu, Ge Wang, Hui-Xia Yao, Wen-Huan Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ce867d7eca64fdb94012dbc73d4a885 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
HDC-Net: A hierarchical dilation convolutional network for retinal vessel segmentation.
por: Xiaolong Hu, et al.
Publicado: (2021) -
Research Progress of Deep Learning in Retinal Vessel Segmentation
por: LI Lanlan1, ZHANG Xiaohui1, NIU Decao3, HU Yihuang1, ZHAO Tiesong1, WANG Dabiao2+
Publicado: (2021) -
HPS-Net: Multi-Task Network for Medical Image Segmentation with Predictable Performance
por: Xin Wei, et al.
Publicado: (2021) -
AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography
por: Kritika Iyer, et al.
Publicado: (2021) -
ChoroidNET: A Dense Dilated U-Net Model for Choroid Layer and Vessel Segmentation in Optical Coherence Tomography Images
por: Tin Tin Khaing, et al.
Publicado: (2021)