Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography
Side-channel attacks can break mathematically secure cryptographic systems leading to a major concern in applied cryptography. While the cryptanalysis and security evaluation of Post-Quantum Cryptography (PQC) have already received an increasing research effort, a cost analysis of efficient side-ch...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Ruhr-Universität Bochum
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3cfe8bdcb938402d9db6c5b9b93e3636 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Side-channel attacks can break mathematically secure cryptographic systems leading to a major concern in applied cryptography. While the cryptanalysis and security evaluation of Post-Quantum Cryptography (PQC) have already received an increasing research effort, a cost analysis of efficient side-channel countermeasures is still lacking. In this work, we propose a masked HW/SW codesign of the NIST PQC finalists Kyber and Saber, suitable for their different characteristics. Among others, we present a novel masked ciphertext compression algorithm for non-power-of-two moduli. To accelerate linear performance bottlenecks, we developed a generic Number Theoretic Transform (NTT) multiplier, which, in contrast to previously published accelerators, is also efficient and suitable for schemes not based on NTT. For the critical non-linear operations, masked HW accelerators were developed, allowing a secure execution using RISC-V instruction set extensions. With the proposed design, we achieved a cycle count of K:214k/E:298k/D:313k for Kyber and K:233k/E:312k/D:351k for Saber with NIST Level III parameter sets. For the same parameter sets, the masking overhead for the first-order secure decapsulation operation including randomness generation is a factor of 4.48 for Kyber (D:1403k)
and 2.60 for Saber (D:915k).
|
---|