Fungal community characteristics and driving factors during the decaying process of Salix psammophila sand barriers in the desert.

Wood-inhabiting fungi are crucial to wood decay and decomposition in S. psammophila sand barriers, which in turn consumingly influence nutrient dynamics in desert soils. In the case of an extremely arid desert, as opposed to forests, little of known about the fungal community composition of decaying...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yumei Liang, Yong Gao, Ruidong Wang, Xia Yang
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3d187aa961674d0b83169b9c2ee1e56c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3d187aa961674d0b83169b9c2ee1e56c
record_format dspace
spelling oai:doaj.org-article:3d187aa961674d0b83169b9c2ee1e56c2021-12-02T20:17:24ZFungal community characteristics and driving factors during the decaying process of Salix psammophila sand barriers in the desert.1932-620310.1371/journal.pone.0258159https://doaj.org/article/3d187aa961674d0b83169b9c2ee1e56c2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0258159https://doaj.org/toc/1932-6203Wood-inhabiting fungi are crucial to wood decay and decomposition in S. psammophila sand barriers, which in turn consumingly influence nutrient dynamics in desert soils. In the case of an extremely arid desert, as opposed to forests, little of known about the fungal community composition of decaying wood and the effects of decomposing wood on soil physical and chemical properties. Combined with high-throughput gene sequencing technology, we investigated the relationships between microenvironment factors with fungal community composition and diversity during the decomposition of Salix psammophila sand barriers. The results showed that the destruction of lignocellulose components during the decay process of S. psammophila sand barrier alters the physical and chemical properties of the surrounding soil. Compared with one-year sand barrier, lignin and cellulose of seven-year S. psammophila sand barrier decreased by 40.48% and 38.33%, respectively. Soil available potassium and available nitrogen increased by 39.80% and 99.46%, respectively. We confirmed that soil available nitrogen, soil pH and soil moisture content significantly affected the fungal community distribution of S. psammophila sand barriers. Sordariomycetes are mainly affected by the positive correlation of soil pH, while Eurotiomycetes are most affected by the positive correlation of soil moisture content and soil porosity. Although our results highlighted the importance of bidirectional interactions between fungi in decayed sand barriers and soil properties, their contribution to the desert ecosystem still needs further confirmation from future studies. However, overall our findings improved the current understanding of the sand barrier-soil interactions on the process of ecological restoration.Yumei LiangYong GaoRuidong WangXia YangPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 10, p e0258159 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yumei Liang
Yong Gao
Ruidong Wang
Xia Yang
Fungal community characteristics and driving factors during the decaying process of Salix psammophila sand barriers in the desert.
description Wood-inhabiting fungi are crucial to wood decay and decomposition in S. psammophila sand barriers, which in turn consumingly influence nutrient dynamics in desert soils. In the case of an extremely arid desert, as opposed to forests, little of known about the fungal community composition of decaying wood and the effects of decomposing wood on soil physical and chemical properties. Combined with high-throughput gene sequencing technology, we investigated the relationships between microenvironment factors with fungal community composition and diversity during the decomposition of Salix psammophila sand barriers. The results showed that the destruction of lignocellulose components during the decay process of S. psammophila sand barrier alters the physical and chemical properties of the surrounding soil. Compared with one-year sand barrier, lignin and cellulose of seven-year S. psammophila sand barrier decreased by 40.48% and 38.33%, respectively. Soil available potassium and available nitrogen increased by 39.80% and 99.46%, respectively. We confirmed that soil available nitrogen, soil pH and soil moisture content significantly affected the fungal community distribution of S. psammophila sand barriers. Sordariomycetes are mainly affected by the positive correlation of soil pH, while Eurotiomycetes are most affected by the positive correlation of soil moisture content and soil porosity. Although our results highlighted the importance of bidirectional interactions between fungi in decayed sand barriers and soil properties, their contribution to the desert ecosystem still needs further confirmation from future studies. However, overall our findings improved the current understanding of the sand barrier-soil interactions on the process of ecological restoration.
format article
author Yumei Liang
Yong Gao
Ruidong Wang
Xia Yang
author_facet Yumei Liang
Yong Gao
Ruidong Wang
Xia Yang
author_sort Yumei Liang
title Fungal community characteristics and driving factors during the decaying process of Salix psammophila sand barriers in the desert.
title_short Fungal community characteristics and driving factors during the decaying process of Salix psammophila sand barriers in the desert.
title_full Fungal community characteristics and driving factors during the decaying process of Salix psammophila sand barriers in the desert.
title_fullStr Fungal community characteristics and driving factors during the decaying process of Salix psammophila sand barriers in the desert.
title_full_unstemmed Fungal community characteristics and driving factors during the decaying process of Salix psammophila sand barriers in the desert.
title_sort fungal community characteristics and driving factors during the decaying process of salix psammophila sand barriers in the desert.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/3d187aa961674d0b83169b9c2ee1e56c
work_keys_str_mv AT yumeiliang fungalcommunitycharacteristicsanddrivingfactorsduringthedecayingprocessofsalixpsammophilasandbarriersinthedesert
AT yonggao fungalcommunitycharacteristicsanddrivingfactorsduringthedecayingprocessofsalixpsammophilasandbarriersinthedesert
AT ruidongwang fungalcommunitycharacteristicsanddrivingfactorsduringthedecayingprocessofsalixpsammophilasandbarriersinthedesert
AT xiayang fungalcommunitycharacteristicsanddrivingfactorsduringthedecayingprocessofsalixpsammophilasandbarriersinthedesert
_version_ 1718374399802867712