Hierarchical clustering using the arithmetic-harmonic cut: complexity and experiments.
Clustering, particularly hierarchical clustering, is an important method for understanding and analysing data across a wide variety of knowledge domains with notable utility in systems where the data can be classified in an evolutionary context. This paper introduces a new hierarchical clustering pr...
Guardado en:
Autores principales: | Romeo Rizzi, Pritha Mahata, Luke Mathieson, Pablo Moscato |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d1c06c6ca0b43f78298ded6d8916924 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unveiling clusters of RNA transcript pairs associated with markers of Alzheimer's disease progression.
por: Ahmed Shamsul Arefin, et al.
Publicado: (2012) - Arithmetic Teacher
-
A kernelisation approach for multiple d-Hitting Set and its application in optimal multi-drug therapeutic combinations.
por: Drew Mellor, et al.
Publicado: (2010) -
Clinical and biological clusters of sepsis patients using hierarchical clustering.
por: Grégory Papin, et al.
Publicado: (2021) -
Stronger arithmetic equivalence
por: Andrew V. Sutherland
Publicado: (2021)