Hierarchical clustering using the arithmetic-harmonic cut: complexity and experiments.
Clustering, particularly hierarchical clustering, is an important method for understanding and analysing data across a wide variety of knowledge domains with notable utility in systems where the data can be classified in an evolutionary context. This paper introduces a new hierarchical clustering pr...
Enregistré dans:
Auteurs principaux: | Romeo Rizzi, Pritha Mahata, Luke Mathieson, Pablo Moscato |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2010
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3d1c06c6ca0b43f78298ded6d8916924 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Unveiling clusters of RNA transcript pairs associated with markers of Alzheimer's disease progression.
par: Ahmed Shamsul Arefin, et autres
Publié: (2012) - Arithmetic Teacher
-
A kernelisation approach for multiple d-Hitting Set and its application in optimal multi-drug therapeutic combinations.
par: Drew Mellor, et autres
Publié: (2010) -
Clinical and biological clusters of sepsis patients using hierarchical clustering.
par: Grégory Papin, et autres
Publié: (2021) -
Stronger arithmetic equivalence
par: Andrew V. Sutherland
Publié: (2021)