A Fully Integrated Reprogrammable CMOS-RRAM Compute-in-Memory Coprocessor for Neuromorphic Applications
Analog compute-in-memory with resistive random access memory (RRAM) devices promises to overcome the data movement bottleneck in data-intensive artificial intelligence (AI) and machine learning. RRAM crossbar arrays improve the efficiency of vector-matrix multiplications (VMMs), which is a vital ope...
Guardado en:
Autores principales: | Justin M. Correll, Vishishtha Bothra, Fuxi Cai, Yong Lim, Seung Hwan Lee, Seungjong Lee, Wei D. Lu, Zhengya Zhang, Michael P. Flynn |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d1d7a52eebe4f4f88627fff7858e676 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
NeuroSOFM: A Neuromorphic Self-Organizing Feature Map Heterogeneously Integrating RRAM and FeFET
por: Siddharth Barve, et al.
Publicado: (2021) -
ReSe2-Based RRAM and Circuit-Level Model for Neuromorphic Computing
por: Yifu Huang, et al.
Publicado: (2021) -
A Low-Power RRAM Memory Block for Embedded, Multi-Level Weight and Bias Storage in Artificial Neural Networks
por: Stefan Pechmann, et al.
Publicado: (2021) -
Assessment of Two-Dimensional Materials-Based Technology for Analog Neural Networks
por: Maksym Paliy, et al.
Publicado: (2021) -
Digitization of analog signals
por: A. V. Zaitsev
Publicado: (2021)