Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images
Abstract As an analytic pipeline for quantitative imaging feature extraction and analysis, radiomics has grown rapidly in the past decade. On the other hand, recent advances in deep learning and transfer learning have shown significant potential in the quantitative medical imaging field, raising the...
Enregistré dans:
Auteurs principaux: | Yucheng Zhang, Edrise M. Lobo-Mueller, Paul Karanicolas, Steven Gallinger, Masoom A. Haider, Farzad Khalvati |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3d233bf30f804aacb0fa45f8d87db39d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal Adenocarcinoma
par: Farzad Khalvati, et autres
Publié: (2019) -
CT Radiomics and Machine-Learning Models for Predicting Tumor-Stroma Ratio in Patients With Pancreatic Ductal Adenocarcinoma
par: Yinghao Meng, et autres
Publié: (2021) -
Preoperative recurrence prediction in pancreatic ductal adenocarcinoma after radical resection using radiomics of diagnostic computed tomography
par: Xiawei Li, et autres
Publié: (2022) -
Resectable and Borderline Resectable Pancreatic Ductal Adenocarcinoma: Role of the Radiologist and Oncologist in the Era of Precision Medicine
par: Federica Vernuccio, et autres
Publié: (2021) -
Dynamic perfusion CT – A promising tool to diagnose pancreatic ductal adenocarcinoma
par: Zaborienė Inga, et autres
Publié: (2021)