Second order dimensionality reduction using minimum and maximum mutual information models.
Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To ov...
Enregistré dans:
Auteurs principaux: | Jeffrey D Fitzgerald, Ryan J Rowekamp, Lawrence C Sincich, Tatyana O Sharpee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2011
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3d31e147728e467f9687e6bc3f6a6e5c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Cross-orientation suppression in visual area V2
par: Ryan J. Rowekamp, et autres
Publié: (2017) -
Bias reduction of a conditional maximum likelihood estimator for a Gaussian second-order moving average model
par: Fumiaki Honda, et autres
Publié: (2021) -
On the maximum number of period annuli for second order conservative equations
par: Armands Gritsans, et autres
Publié: (2021) -
Teaching and learning process for mathematization activities: The case of solving maximum and minimum problems
par: Al Jupri, et autres
Publié: (2021) -
Examining the prey mass of terrestrial and aquatic carnivorous mammals: minimum, maximum and range.
par: Marlee A Tucker, et autres
Publié: (2014)