Maurer-Cartan equation in the DGLA of graded derivations
Let M be a smooth manifold and D = ℒΨ+𝒥Ψ a solution of the Maurer-Cartan equation in the DGLA of graded derivations D* (M) of differential forms on M, where Ψ, Ψ are differential 1-form on M with values in the tangent bundle TM and ℒΨ, 𝒥Ψ are the d* and i* components of D. Under the hypothesis that...
Guardado en:
Autores principales: | de Bartolomeis Paolo, Iordan Andrei |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d3765efb72548cd93f043031b242882 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Graded I-second submodules
por: Bataineh Malik, et al.
Publicado: (2021) -
On graded Jgr-classical 2-absorbing submodules of graded modules over graded commutative rings
por: Al-Zoubi Khaldoun, et al.
Publicado: (2021) -
Ricci-flat and Einstein pseudoriemannian nilmanifolds
por: Conti Diego, et al.
Publicado: (2019) -
On graded 2-classical prime submodules of graded modules over graded commutative rings
por: Al-Zoubi,Khaldoun, et al.
Publicado: (2019) -
Locally conformally Kähler structures on four-dimensional solvable Lie algebras
por: Angella Daniele, et al.
Publicado: (2019)