Structural Damage Detection Using Supervised Nonlinear Support Vector Machine
Damage detection, using vibrational properties, such as eigenfrequencies, is an efficient and straightforward method for detecting damage in structures, components, and machines. The method, however, is very inefficient when the values of the natural frequencies of damaged and undamaged specimens ex...
Guardado en:
Autor principal: | Kian K. Sepahvand |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d403de8715643ef81d011b5ed9ae26f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Design and analysis of quantum powered support vector machines for malignant breast cancer diagnosis
por: Vashisth Shubham, et al.
Publicado: (2021) -
Prediction of xylanase optimal temperature by support vector regression
por: Zhang,Guangya, et al.
Publicado: (2012) -
SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS
por: YU,XINLIANG, et al.
Publicado: (2011) -
Support vector machines for oil classification link with polyaromatic hydrocarbon contamination in the environment
por: Azimah Ismail, et al.
Publicado: (2021) -
An Expert System for Rotating Machine Fault Detection Using Vibration Signal Analysis
por: Ayaz Kafeel, et al.
Publicado: (2021)