A Continuum Deformation Approach for Growth Analysis of COVID-19 in the United States
Abstract The COVID-19 global pandemic has significantly impacted every aspect of life all over the world. The United States is reported to have suffered more than 20% of the global casualties from this pandemic. It is imperative to investigate the growth dynamics of the disease in the US based on va...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d4058220226448193040c169348f79c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The COVID-19 global pandemic has significantly impacted every aspect of life all over the world. The United States is reported to have suffered more than 20% of the global casualties from this pandemic. It is imperative to investigate the growth dynamics of the disease in the US based on varying geographical and governmental factors that best manifest itself in each State of the Country. This paper utilizes a hybrid machine learning and continuum deformation-based approach for analyzing the stability and growth rate of the pandemic. To this end, principal stress values of the pandemic continuum body are obtained using Mohr’s Circle method and overlapping, moving windows of data are analysed successively. This helps in finding the correlations between the growth rate and Governments’ action/Public’s reaction. Government actions include “state of emergency”, “shelter at place”, and “phase declarations”. We also consider the vaccination rate milestones, which shows us the coordinated Governments’ action/Public’s reaction. Finally, a number of recommendations are made to the Governments and people for better management of future pandemics. |
---|