Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN

The complexity of genome-scale metabolic networks (GEMs) hinders their application in specific physiological contexts. Here, the authors introduce a framework to reduce thermodynamically curated GEMs to the subnetworks of interest and demonstrate its application by deriving leukemia-specific models.

Guardado en:
Detalles Bibliográficos
Autores principales: Maria Masid, Meric Ataman, Vassily Hatzimanikatis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/3d41aec2fe0240f39f36e6ac9ec3d22c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The complexity of genome-scale metabolic networks (GEMs) hinders their application in specific physiological contexts. Here, the authors introduce a framework to reduce thermodynamically curated GEMs to the subnetworks of interest and demonstrate its application by deriving leukemia-specific models.