Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN
The complexity of genome-scale metabolic networks (GEMs) hinders their application in specific physiological contexts. Here, the authors introduce a framework to reduce thermodynamically curated GEMs to the subnetworks of interest and demonstrate its application by deriving leukemia-specific models.
Guardado en:
Autores principales: | Maria Masid, Meric Ataman, Vassily Hatzimanikatis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d41aec2fe0240f39f36e6ac9ec3d22c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN
por: Maria Masid, et al.
Publicado: (2020) -
A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics
por: Omid Oftadeh, et al.
Publicado: (2021) -
The ETFL formulation allows multi-omics integration in thermodynamics-compliant metabolism and expression models
por: Pierre Salvy, et al.
Publicado: (2020) -
A genome-scale integration and analysis of Lactococcus lactis translation data.
por: Julien Racle, et al.
Publicado: (2013) -
Spatio-temporal modeling of the crowding conditions and metabolic variability in microbial communities.
por: Liliana Angeles-Martinez, et al.
Publicado: (2021)