Machine learning model for predicting the optimal depth of tracheal tube insertion in pediatric patients: A retrospective cohort study.
<h4>Objective</h4>To construct a prediction model for optimal tracheal tube depth in pediatric patients using machine learning.<h4>Methods</h4>Pediatric patients aged <7 years who received post-operative ventilation after undergoing surgery between January 2015 and Decembe...
Guardado en:
Autores principales: | Jae-Geum Shim, Kyoung-Ho Ryu, Sung Hyun Lee, Eun-Ah Cho, Sungho Lee, Jin Hee Ahn |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d545c11ac40473380114d822a14b2e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Point of care airway ultrasound to select tracheal tube and determine insertion depth in cleft repair surgery
por: Jung Hwan Ahn, et al.
Publicado: (2021) -
Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years
por: Jae-Geum Shim, et al.
Publicado: (2021) -
Posterior tracheal wall leading to life-threatening obstruction of tracheostomy tube
por: Sanjay Singhal, et al.
Publicado: (2013) -
The protective effect of adenoidectomy on pediatric tympanostomy tube re-insertions: a population-based birth cohort study.
por: Mao-Che Wang, et al.
Publicado: (2014) -
Tracheal Compression by Aberrant Brachiocephalic Trunk Accompanying Variant Origin of the Vertebral Artery
por: Yang,Kiwook, et al.
Publicado: (2017)