Learned Image Compression With Separate Hyperprior Decoders
Learned image compression techniques have achieved considerable development in recent years. In this paper, we find that the performance bottleneck lies in the use of a single hyperprior decoder, in which case the ternary Gaussian model collapses to a binary one. To solve this, we propose to use thr...
Guardado en:
Autores principales: | Zhao Zan, Chao Liu, Heming Sun, Xiaoyang Zeng, Yibo Fan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d5edee77bea48bc9984699c72bba75b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Guest Editorial Circuits and Systems for Flexible Electronics
por: Lian Yong, et al.
Publicado: (2021) -
Editorial to the Special Section on Optimized Image/Video Coding Based on Deep Learning
por: Zhibo Chen, et al.
Publicado: (2021) -
End-to-End Compression Towards Machine Vision: Network Architecture Design and Optimization
por: Shurun Wang, et al.
Publicado: (2021) -
Rate-Distortion Optimized Encoding for Deep Image Compression
por: Michael Schafer, et al.
Publicado: (2021) -
Bilateral comparison in Rockwell C hardness scale between INRiM and GUM
por: J.D. Fidelus, et al.
Publicado: (2021)