Zn Vacancy Formation Energy and Diffusion Coefficient of CVT ZnO Crystals in the Sub-Surface Micron Region
Abstract By using positron annihilation spectroscopy methods, we have experimentally demonstrated the creation of isolated zinc vacancy concentrations >1020 cm−3 in chemical vapor transport (CVT)-grown ZnO bulk single crystals. X-ray diffraction ω-rocking curve (XRC) shows the good quality of ZnO...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d641a657d4e40e39aa106a343b96f0a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract By using positron annihilation spectroscopy methods, we have experimentally demonstrated the creation of isolated zinc vacancy concentrations >1020 cm−3 in chemical vapor transport (CVT)-grown ZnO bulk single crystals. X-ray diffraction ω-rocking curve (XRC) shows the good quality of ZnO single crystal with (110) orientation. The depth analysis of Auger electron spectroscopy indicates the atomic concentrations of Zn and O are almost stoichiometric and constant throughout the measurement. Boltzmann statistics are applied to calculate the zinc vacancy formation energies (E f ) of ~1.3–1.52 eV in the sub-surface micron region. We have also applied Fick’s 2nd law to calculate the zinc diffusion coefficient to be ~1.07 × 10−14 cm2/s at 1100 °C. The zinc vacancies began annealing out at 300 °C and, by heating in the air, were completely annealed out at 700 °C. |
---|