Persistence in factor-based supervised learning models
In this paper, we document the importance of memory in machine learning (ML)-based models relying on firm characteristics for asset pricing. We find that predictive algorithms perform best when they are trained on long samples, with long-term returns as dependent variables. In addition, we report th...
Guardado en:
Autor principal: | Guillaume Coqueret |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
KeAi Communications Co., Ltd.
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d705e58b42b4cf7a6d9cbe210af6116 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Classification of Long-Tailed Data Based on Bilateral-Branch Generative Network with Time-Supervised Strategy
por: Yalin Huang, et al.
Publicado: (2021) -
FinLex: An effective use of word embeddings for financial lexicon generation
por: Sanjiv R. Das, et al.
Publicado: (2022) -
Komparasi Algoritma C4.5 Berbasis PSO Dan GA Untuk Diagnosa Penyakit Stroke
por: Ramdhan Saepul Rohman, et al.
Publicado: (2020) -
Feature fusion-based collaborative learning for knowledge distillation
por: Yiting Li, et al.
Publicado: (2021) -
Ontology-Based Analysis of Manufacturing Processes: Lessons Learned from the Case Study of Wire Harness Production
por: László Nagy, et al.
Publicado: (2021)