Predicting the evolution of Escherichia coli by a data-driven approach

How reproducible evolutionary processes are remains an important question in evolutionary biology. Here, the authors compile a compendium of more than 15,000 mutation events for Escherichia coli under 178 distinct environmental settings, and develop an ensemble of predictors to predict evolution at...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaokang Wang, Violeta Zorraquino, Minseung Kim, Athanasios Tsoukalas, Ilias Tagkopoulos
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/3d716d97abf6460ea0ada536a16d3e36
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3d716d97abf6460ea0ada536a16d3e36
record_format dspace
spelling oai:doaj.org-article:3d716d97abf6460ea0ada536a16d3e362021-12-02T14:41:16ZPredicting the evolution of Escherichia coli by a data-driven approach10.1038/s41467-018-05807-z2041-1723https://doaj.org/article/3d716d97abf6460ea0ada536a16d3e362018-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05807-zhttps://doaj.org/toc/2041-1723How reproducible evolutionary processes are remains an important question in evolutionary biology. Here, the authors compile a compendium of more than 15,000 mutation events for Escherichia coli under 178 distinct environmental settings, and develop an ensemble of predictors to predict evolution at a gene level.Xiaokang WangVioleta ZorraquinoMinseung KimAthanasios TsoukalasIlias TagkopoulosNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-12 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xiaokang Wang
Violeta Zorraquino
Minseung Kim
Athanasios Tsoukalas
Ilias Tagkopoulos
Predicting the evolution of Escherichia coli by a data-driven approach
description How reproducible evolutionary processes are remains an important question in evolutionary biology. Here, the authors compile a compendium of more than 15,000 mutation events for Escherichia coli under 178 distinct environmental settings, and develop an ensemble of predictors to predict evolution at a gene level.
format article
author Xiaokang Wang
Violeta Zorraquino
Minseung Kim
Athanasios Tsoukalas
Ilias Tagkopoulos
author_facet Xiaokang Wang
Violeta Zorraquino
Minseung Kim
Athanasios Tsoukalas
Ilias Tagkopoulos
author_sort Xiaokang Wang
title Predicting the evolution of Escherichia coli by a data-driven approach
title_short Predicting the evolution of Escherichia coli by a data-driven approach
title_full Predicting the evolution of Escherichia coli by a data-driven approach
title_fullStr Predicting the evolution of Escherichia coli by a data-driven approach
title_full_unstemmed Predicting the evolution of Escherichia coli by a data-driven approach
title_sort predicting the evolution of escherichia coli by a data-driven approach
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/3d716d97abf6460ea0ada536a16d3e36
work_keys_str_mv AT xiaokangwang predictingtheevolutionofescherichiacolibyadatadrivenapproach
AT violetazorraquino predictingtheevolutionofescherichiacolibyadatadrivenapproach
AT minseungkim predictingtheevolutionofescherichiacolibyadatadrivenapproach
AT athanasiostsoukalas predictingtheevolutionofescherichiacolibyadatadrivenapproach
AT iliastagkopoulos predictingtheevolutionofescherichiacolibyadatadrivenapproach
_version_ 1718389923743006720