Predicting the evolution of Escherichia coli by a data-driven approach
How reproducible evolutionary processes are remains an important question in evolutionary biology. Here, the authors compile a compendium of more than 15,000 mutation events for Escherichia coli under 178 distinct environmental settings, and develop an ensemble of predictors to predict evolution at...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d716d97abf6460ea0ada536a16d3e36 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3d716d97abf6460ea0ada536a16d3e36 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3d716d97abf6460ea0ada536a16d3e362021-12-02T14:41:16ZPredicting the evolution of Escherichia coli by a data-driven approach10.1038/s41467-018-05807-z2041-1723https://doaj.org/article/3d716d97abf6460ea0ada536a16d3e362018-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05807-zhttps://doaj.org/toc/2041-1723How reproducible evolutionary processes are remains an important question in evolutionary biology. Here, the authors compile a compendium of more than 15,000 mutation events for Escherichia coli under 178 distinct environmental settings, and develop an ensemble of predictors to predict evolution at a gene level.Xiaokang WangVioleta ZorraquinoMinseung KimAthanasios TsoukalasIlias TagkopoulosNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-12 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Xiaokang Wang Violeta Zorraquino Minseung Kim Athanasios Tsoukalas Ilias Tagkopoulos Predicting the evolution of Escherichia coli by a data-driven approach |
description |
How reproducible evolutionary processes are remains an important question in evolutionary biology. Here, the authors compile a compendium of more than 15,000 mutation events for Escherichia coli under 178 distinct environmental settings, and develop an ensemble of predictors to predict evolution at a gene level. |
format |
article |
author |
Xiaokang Wang Violeta Zorraquino Minseung Kim Athanasios Tsoukalas Ilias Tagkopoulos |
author_facet |
Xiaokang Wang Violeta Zorraquino Minseung Kim Athanasios Tsoukalas Ilias Tagkopoulos |
author_sort |
Xiaokang Wang |
title |
Predicting the evolution of Escherichia coli by a data-driven approach |
title_short |
Predicting the evolution of Escherichia coli by a data-driven approach |
title_full |
Predicting the evolution of Escherichia coli by a data-driven approach |
title_fullStr |
Predicting the evolution of Escherichia coli by a data-driven approach |
title_full_unstemmed |
Predicting the evolution of Escherichia coli by a data-driven approach |
title_sort |
predicting the evolution of escherichia coli by a data-driven approach |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/3d716d97abf6460ea0ada536a16d3e36 |
work_keys_str_mv |
AT xiaokangwang predictingtheevolutionofescherichiacolibyadatadrivenapproach AT violetazorraquino predictingtheevolutionofescherichiacolibyadatadrivenapproach AT minseungkim predictingtheevolutionofescherichiacolibyadatadrivenapproach AT athanasiostsoukalas predictingtheevolutionofescherichiacolibyadatadrivenapproach AT iliastagkopoulos predictingtheevolutionofescherichiacolibyadatadrivenapproach |
_version_ |
1718389923743006720 |