Predicting the evolution of Escherichia coli by a data-driven approach
How reproducible evolutionary processes are remains an important question in evolutionary biology. Here, the authors compile a compendium of more than 15,000 mutation events for Escherichia coli under 178 distinct environmental settings, and develop an ensemble of predictors to predict evolution at...
Guardado en:
Autores principales: | Xiaokang Wang, Violeta Zorraquino, Minseung Kim, Athanasios Tsoukalas, Ilias Tagkopoulos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3d716d97abf6460ea0ada536a16d3e36 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
por: Minseung Kim, et al.
Publicado: (2016) -
Accelerated knowledge discovery from omics data by optimal experimental design
por: Xiaokang Wang, et al.
Publicado: (2020) -
Genomic evolution of antimicrobial resistance in Escherichia coli
por: Pimlapas Leekitcharoenphon, et al.
Publicado: (2021) -
Adaptive laboratory evolution of a genome-reduced Escherichia coli
por: Donghui Choe, et al.
Publicado: (2019) -
Genome evolution and the emergence of pathogenicity in avian Escherichia coli
por: Leonardos Mageiros, et al.
Publicado: (2021)